
DEPARTMENT OF THE AIR FORCE

AIR UNIVERSITY

AIR FORCE INSTITUTE OF TECHNOLOGY

Wright-Patterson Air Force Base, Ohio



AFIT/GSO/ENP/96D-02

ESTIMATION OF SATELLITE ORIENTATION

FROM SPACE SURVEILLANCE IMAGERY
MEASURED WITH AN

ADAPTIVE OPTICS TELESCOPE

THESIS

Gregory E. Wood
Lieutenant, USAF

AFIT/GSO/ENP/96D-02

19970210 036
Approved for public release; distribution unlimited



The views expressed in this thesis are those of the author and do not reflect the

official policy or position of the Department of Defense or the U. S. Government.



AFIT/GSO/ENP/96D-02

ESTIMATION OF SATELLITE ORIENTATION FROM SPACE

SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE

OPTICS TELESCOPE

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

In Partial Fulfillment of the

Requirements for the Degree of

Master of Science

Gregory E. Wood, B.S.

Lieutenant, USAF

December, 1996

Approved for public release; distribution unlimited



Acknowledgements

I would like to express my appreciation to my research sponsor, Phillips Labo-

ratory OL-YY, for allowing my involvement in this research. This applies equally to

Major Michael Roggemann, Ph.D., my thesis advisor, for his guidance. This thesis

is representative to his efforts to guide a student with a minimal optics background

and raise him to a level where it was possible to conduct meaningful research. I am

also indebted to Dr. Byron Welsh whose involvement as a committee member was

essential to the success of these efforts. I am grateful to both Major Roggemann

and Dr. Welsh for their "hands off" approach as advisors. Unlike many of my peers

I was allowed to pursue this research effort in my own manner and was given the

freedom to experiment with different approaches. They were always there, however,

when I ran up against the inevitable "brick wall". Even more importantly than what

I learned about adaptive optics, they taught me how to think.

Several of my peers also need to be recognized here. Captain David Gill from

the National Air Intelligence Center, AFIT class GSO 94D, was instrumental to the

success of this project. He openly gave his time and assistance in providing the

satellite models used in this project. I would also like to thank the other members of

my class, GSO 96D, for their sincere interest in this project and support throughout

our experiences at AFIT. A special thanks goes to Captain Scott Maethner for

sharing all of those late nights and non-existent weekends and holidays. Without

our marathon study sessions, very little of what I achieved at AFIT could have been

accomplished.

Above all, I wish to express the utmost in thanks to my wife, Gina, for her

support throughout this research and the rest of my work at AFIT. Without her

patience and understanding, none of this work would have been possible.

Gregory E. Wood

ii



Table of Contents

Page

Acknowledgements. .. .. .. ... ... ... ... ... ... ... ... ... ii

List of Figures .. .. .. ... ... ... ... ... ... ... ... ... ... vi

List of Tables. .. .. .. .. ... ... ... ... ... ... ... ......... ix

Abstract .. .. .. .. ... ... ... ... ... ... ... ... ... ...... xii

1. Introduction. .. .. .. .. ... ... ... ... ... ... ... ......

1.1 Motivation. .. .. .. ... ... ... ... ... ... ... 1

1.2 Background. .. .. .. .. ... ... ... ... ... ..... 2

1.3 Current Knowledge. .. .. .. .. ... ... ... ... ... 4

1.4 Problem Statement. .. .. .. .. ... ... ... ... ... 5

1.5 Research Objectives .. .. .. ... ... ... ... ...... 6

1.6 Approach .. .. .. .. ... ... ... ... ... ... ... 6

1.7 Scope. .. .. .. ... ... ... ... ... ... ... ... 7

1.8 Key Results .. .. .. .. ... ... ... ... ... ...... 8

1.9 Thesis Organization .. .. .. ... ... ... ... ...... 8

1.10 Summary .. .. .. .. ... ... ... ... ... ... ... 9

Ii. Theory .. .. .. .. ... ... ... ... ... ... .. .... ...... 10

2.1 The Concept of the Matched Filter. .. .. .. .. ... ... 10

2.1.1 Use of the Matched Filter for Character Recognition 11

2.1.2 Deficiencies of the Matched Filter Approach for Pat-

tern Recognition .. .. .. ... ... ... ...... 14

2.2 Noise Considerations. .. .. .. .. ... ... ... ..... 19

2.3 Imaging Through the Atmosphere. .. .. .. .. ... .... 22

iii



Page

2.3.1 Turbulence and Target Image Blurring ...... ... 22

2.3.2 Adaptive Optics ........................ 24

2.3.3 Hybrid Imaging and Deconvolution ........... 28

2.3.4 Visual Magnitude ....................... 33

2.4 Image Processing Techniques ..... ................ 34

2.5 Summary ....... ........................... 36

Ill. Methodology ........ ............................... 37

3.1 Introduction ................................ 37

3.2 Satellite Model Development ..... ................ 37

3.2.1 Model Format .......................... 38

3.2.2 Model Scaling .......................... 39

3.2.3 Model Storage ......................... 40

3.3 Model of the Adaptive Optics Telescope ............. 41,

3.4 Seeing Conditions ............................ 42,

3.4.1 Turbulence Levels ....................... 42

3.4.2 Light Levels .......................... 43

3.5 Creation of the Test Image Database ................ 44'

3.6 Test Procedures .............................. 47

3.6.1 The Methodology for the Matched Filter Tests . . 47

3.6.2 Matched Filter Algorithms ................ 48

3.7 Summary ....... ........................... 56

IV. Analysis of Results ....... ............................ 57

4.1 Analysis of the Matched Filter Algorithms Examined in This

Thesis ....... ............................. 57

4.2 Limitations of the Matched Filter for the Satellite Pose Es-

timation Problem ............................ 66

4.2.1 Dependency on ro . . . . . .. . . . . . . . . . . . . .. . . . . 66

iv



Page

4.2.2 Dependency on Visual Magnitude ............ 68

4.3 Weighted Utilities of the Matched Filter Algorithms. . .. 73

4.3.1 Combined Occurrence Rates for r. and M, ... 73

4.3.2 Determination of Weighted Utilities ........ ... 80

4.4 Summary ....... ........................... 83

V. Conclusion and Recommendations for Future Research ........... 84

5.1 Summary of Research Advancements ................ 84

5.2 Summary of Results Obtained ..................... 85

5.3 Conclusions Drawn from Research .... ............. 86

5.4 Recommendations for Future Research .............. 86

5.5 Summary ....... ........................... 87

Appendix A. Test Results ................................ 89

Appendix B. Calculated Correlation Values Between Actual and Predicted

Poses ....... ............................. 100

Appendix C. Confusion Matrices ........................... 102

Bibliography ........ ................................... 111

Vita .......... ........................................ 113

V



List of Figures

Figure Page

1. Block Diagram Representation of the Matched Filter as Applied to the

Pattern Recognition Problem ............................ 12

2. Sobel Operator Masks ................................ 15

3. Generalized Spatial Filtering Mask ........................ 15

4. Basic Tophat and Cone Filters .......................... 21

5. Temporal Variation of r, at Capella, United Kingdom ........... 23

6. Schematic of a Typical Adaptive Optics System .............. 25

7. Schematic of a Shack Hartmann Wavefront Sensor ............. 26

8. Schematic of a Typical Hybrid Imaging System ................ 29

9. Determination of the Width of the MTF from Radially Averaged SNR

Data ........ ................................... 32

10. Results of Utilizing Deconvolution Techniques on a Sample Image 33

11. Blurring Effects Due to the Application of a Median Filter ..... ... 35

12. Historical Data for r, Values Encountered When Imaging LEO Satel-

lites at AMOS ....... .............................. 42

13. Historical Data for M, Values Encountered When Imaging LEO Satel-

lites at AMOS ....... .............................. 43

14. Sample Hysim3 Output Images .......................... 46

15. Schematic of Case 1 ....... ........................... 50

16. Schematic of Case 2 ....... ........................... 50

17. Schematic of Case 3 ....... ........................... 51

18. Schematic of Case 4 ....... ........................... 51

19. Sobel Edge Map Demonstrating the False Edges Due to Deconvolution

at Low Light Levels ....... ........................... 52

20. Result of Applying a Median Filter to a Deconvolved Image ..... .. 53

vi



Figure Page

21. Effects of Applying Line Thickening to the Sobel Edge Map of a De-

convolved Image Which Has Been Passed Through a 9 x 9 Median

Filter ........ ................................... 54

22. Schematic of Case 5 ....... ........................... 55

23. Cumulative Probability Distribution for Correlation Values Achieved

With Each Approach to the Matched Filter Pose Estimation Procedure 59

24. Sample Images From the Known Image Database Demonstrating Sym-

metry Qualities of the Satellites Studied ..................... 62

25. Performance of Matched Filter Algorithms by Seeing Condition, With

and Without Symmetry Errors Allowed: Case 1 .............. 63

26. Performance of Matched Filter Algorithms by Seeing Condition, With

and Without Symmetry Errors Allowed: Case 2 .............. 63

27. Performance of Matched Filter Algorithms by Seeing Condition, With

and Without Symmetry Errors Allowed: Case 3 .............. 64

28. Performance of Matched Filter Algorithms by Seeing Condition, With

and Without Symmetry Errors Allowed: Case 4 .............. 64

29. Performance of Matched Filter Algorithms by Seeing Condition, With

and Without Symmetry Errors Allowed: Case 5 .............. 65

30. Radially Averaged SNR as a Function of ro ..................... 67

31. Correct Pose Estimation as a Function of ro: Case 1 ............ 69

32. Correct Pose Estimation as a Function of r,: Case 2 ............ 69

33. Correct Pose Estimation as a Function of r,: Case 3 ............ 70

34. Correct Pose Estimation as a Function of r.: Case 4 ............ 70

35. Correct Pose Estimation as a Function of r,: Case 5 ............ 71

36. Radially Averaged SNR as a Function of M .................. 72

37. Correct Pose Estimation as a Function of M,: Case 1 ........... 74

38. Correct Pose Estimation as a Function of M,: Case 2 ........... 74

39. Correct Pose Estimation as a Function of M,: Case 3 ........... 75

40. Correct Pose Estimation as a Function of M,: Case 4 ........... 75

vii



Figure Page

41. Correct Pose Estimation as a Function of M,: Case 5 ........... 76

42. Probability Distributions for ro and My ...................... 78

43. Probabilities of Combinations of r, and My .................... 79

44. Weighted Percentage Utilities for Each Matched Filter Algorithm .. 81

45. Weighted Correlation Utility Values ....................... 82

viii



List of Tables
Table Page

1. Parameters Used to Determine the Appropriate Scale Factor . . . . 39

2. Description of the Adaptive Optics Telescope Used in This Study. 41

3. Parameters used for Light Level Calculations ................ 44

4. Incident Photon Flux as a Function of Visual Magnitude ......... 44

5. Satellite Orientations Used for the Matched Filter Tests ....... ... 46

6. Definition of Seeing Conditions Considered in This Study ...... ... 47

7. Definition of Case Names ...... ........................ 48

8. Correct Pose Estimations for Each of the Matched Filter Algorithms 57

9. Confusion Matrix for Chucksat Using the Case 4 Algorithm ..... .. 60

10. Occurrence Rates of Correlation Values ..................... 61

11. Parameters Defining the Logistic Probability Distribution for r, and

M y . .... ...... ......... ........... ...... 77

12. Probabilities of ro,M, Combinations Considered in this Thesis . . . 78

13. Relative Occurrence Rates of Seeing Conditions Considered in this

Thesis ......... .................................. 79

14. Case 1 Results, Input c30n150 ..... ..................... 90

15. Case 1 Results, Input c45p0. ............................ 90

16. Case 1 Results, Input c60p60. ............................ 90

17. Case 1 Results, Input d30p120 .......................... 90

18. Case 1 Results, Input d45n30. ............................. 90

19. Case 1 Results, Input d60p180 .......................... 91

20. Case 1 Results, Input o30n60. .................... ....... . 91

21. Case 1 Results, Input o45p90. ............................. 91

22. Case 2 Results, Input c30n150 ..... ..................... 92

23. Case 2 Results, Input c45p0. ............................ 92

ix



Table Page

24. Case 2 Results, Input c60p60 .. .. .. .. .. ... ... ... ..... 92

25. Case 2 Results, Input d30p12 . .. .. .. .. ... ... ... ..... 92

26. Case 2 Results, Input d45n30 .. .. .. .. .. ... ... ... ..... 92

27. Case 2 Results, Input d60pl8 . .. .. .. .. ... ... ... ..... 93

28. Case 2 Results, Input o30n60 .. .. .. .. .. ... ... ... ..... 93

29. Case 2 Results, Input o45p9 . .. .. .. .. .. .. .. .. .. .. .. 93

30. Case 3 Results, Input c30n15 . .. .. .. ... ... ... ... .... 94

31. Case 3 Results, Input c45p . .. .. .. ... ... ... ... ..... 94

32. Case 3 Results, Input c60p60 .. .. .. .. .. ... ... ... ..... 94

33. Case 3 Results, Input d30p12 . .. .. .. .. ... ... ... ..... 94

34. Case 3 Results, Input d45n30 .. .. .. .. .. ... ... ... ..... 94

35. Case 3 Results, Input d60p18 . .. .. .. .. ... ... ... ..... 95

36. Case 3 Results, Input o30n60 .. .. .. .. .. ... ... ... ..... 95

37. Case 3 Results, Input o45p90 .. .. .. .. .. ... ... ... ..... 95

38. Case 4 Results, Input c30n15 . .. .. .. ... ... ... ... .... 96

39. Case 4 Results, Input c45p . .. .. .. ... ... ... ... ..... 96

40. Case 4 Results, Input c60p60 .. .. .. .. .. ... ... ... ..... 96

41. Case 4 Results, Input d30p12 . .. .. .. .. ... ... ... ..... 96

42. Case 4 Results, Input d45n30 .. .. .. .. .. ... ... ... ..... 96

43. Case 4 Results, Input d60p18 . .. .. .. .. ... ... ... ..... 97

44. Case 4 Results, Input o30n6O .. .. .. .. .. ... ... ... ..... 97

45. Case 4 Results, Input o45p90 .. .. .. .. .. ... ... ... ..... 97

46. Case 5 Results, Input c30n15 . .. .. .. ... ... ... .. ..... 98

47. Case 5 Results, Input c45p . .. .. .. ... ... ... ... ..... 98

48. Case 5 Results, Input c60p60 .. .. .. .. .. ... ... ... ..... 98

49. Case 5 Results, Input d30pl2 . .. .. .. .. ... ... ... ..... 98

50. Case 5 Results, Input d45n30 .. .. .. .. .. ... ... ... ..... 98

x



Table Page

51. Case 5 Results, Input d60p180. ........................... 99

52. Case 5 Results, Input o30n60. ............................. 99

53. Case 5 Results, Input o45p90 ...................... .. 99

54. Case 1 Correlation Values .............................. 100

55. Case 2 Correlation Values .............................. 100

56. Case 3 Correlation Values ............................. 101

57. Case 4 Correlation Values .............................. 101

58. Case 5 Correlation Values .............................. 101

59. Confusion Matrix for Chucksat, Case 1 ..................... 103

60. Confusion Matrix for DMSP, Case 1 ................ ...... 103

61. Confusion Matrix for OCNR, Case 1 ....................... 104

62. Confusion Matrix for Chucksat, Case 2 ..................... 104

63. Confusion Matrix for DMSP, Case 2 ....................... 105

64. Confusion Matrix for OCNR, Case 2 ....................... 105

65. Confusion Matrix for Chucksat, Case 3 ..................... 106

66. Confusion Matrix for DMSP, Case 3 ....................... 106

67. Confusion Matrix for OCNR, Case 3 ....................... 107

68. Confusion Matrix for Chucksat, Case 4 ..................... 107

69. Confusion Matrix for DMSP, Case 4 ....................... 108

70. Confusion Matrix for OCNR, Case 4 ....................... 108

71. Confusion Matrix for Chucksat, Case 5 ..................... 109

72. Confusion Matrix for DMSP, Case 5 ....................... 109

73. Confusion Matrix for OCNR, Case 5 ....................... 110

xi



AFIT/GSO/ENP/96D-02

Abstract

The use of the matched filter to automatically estimate the pose of a Low

Earth Orbiting satellite from imagery taken with an adaptive optics telescope is

explored. This work represents the first effort to solve the satellite pose estima-

tion problem while considering the broad range of atmospheric turbulence levels and

target visual magnitudes that are encountered in ground based space surveillance

operations. Several algorithms are examined in an effort to determine the perfor-

mance bounds on the matched filter for this application. Results are given over

an extremely wide range of seeing conditions. These results are weighted based on

historical data obtained from the Air Force Maui Optical Station (AMOS) to show

that, under normal imaging conditions, the matched filter approach proposed in this

thesis can be expected to yield correct pose estimations in over eighty percent of the

trials considered. Additionally, it is shown that a significant portion of errors are

between two poses that are very similar in appearance, such as views of the target

about an axis of symmetry. A correlation value is defined such that a value between

0.0 and 1.0 is assigned for each trial. This correlation value is a quantitative measure

of the similarity between the predicted pose and the actual pose being imaged, with

a value of 1.0 being representative of a correct pose estimation. When weighted ac-

cording to actual seeing conditions, the algorithm developed in this study provides

an average correlation value in excess of 0.98. A dependable algorithm is defined that

will function efficiently under a wide range of seeing conditions that are encountered

in ground based space surveillance operations.

xii



ESTIMATION OF SATELLITE ORIENTATION FROM SPACE

SURVEILLANCE IMAGERY MEASURED WITH AN ADAPTIVE

OPTICS TELESCOPE

. Introduction

1.1 Motivation

The motivation for this research is to solve a practical problem in space op-

erations by combining the science of remote sensing with the techniques of Fourier

optics. There are several potential uses for a simple, reliable method to estimate the

pose of an orbiting satellite. Throughout this thesis, the term "pose" refers to the

three dimensional orientation of an orbiting satellite. Primarily, however, this could

be a useful tool in determining the attitude of a satellite if regular telemetry data is

not available due to a satellite malfunction or when imaging foreign spacecraft.

For instance, a satellite may not properly deploy once its booster has placed

it into orbit. This was the case with AeroAstro Corporation's Alexis program in

1993(28). A Pegasus booster placed the satellite into orbit. However, one of the

solar panels did not properly deploy. A critical piece of the attitude determination

subsystem was located on the axis of that panel. As a result, the satellite was never

able to place itself in proper alignment with the sun. Because it was not able to

generate power, the satellite entered a safe mode. The payload was unharmed and

would have functioned if it was possible to align the solar panels, but ground con-

trollers were unable to determine the satellite's pose. If this data had been available,

the situation could have been quickly corrected from the ground. Instead, ground

teams were forced to wait nearly two months before they could evaluate what had

gone wrong with the satellite. Using small bursts of data that were transmitted from
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the vehicle as its solar cells occasionally aligned with the sun long enough to provide

a partial charge to the batteries, ground teams were eventually able to determine

the satellite's pose. Once this was accomplished, the satellite was repositioned and

became fully operational. However, two months of scientific data was lost.

1.2 Background

Ground based telescopes can be used to assess payloads, missions, and threats

of orbiting satellites. Limitations due to the physics of orbital mechanics prohibit

gathering this type of data in a timely manner from space based platforms (5:169).

The required orbital plane changes are very expensive in terms of the limited fuel

supply on an orbiting satellite (13:148).

There are, however, several complications associated with the imaging of earth

orbiting objects from ground based observatories (23). Atmospheric turbulence dra-

matically decreases the resolution that can be achieved. Differential heating of large

segments of the earth's surface yields an inhomogeneous temperature distribution

within the air. This causes the air to move and dissipate heat into smaller turbulent

eddies. Each of these turbulent eddies has its own temperature distribution which

causes changes in the index of refraction. This results in random spatial and tem-

poral distributions of the index of refraction. Hence, light received from the target

satellite at the telescope is retarded at different rates, yielding a blurred image. The

resolution of even the largest uncompensated telescopes is limited by atmospheric

effects to a much greater extent than by the telescope diameter (22:451). This study

utilizes a simulated adaptive optics (AO) telescope to partially compensate for at-

mospheric turbulence effects.

Light collected by a telescope from the satellite being imaged, referred to

throughout this thesis as the target, can only be a combination of reflected sun-

light and emitted blackbody radiation. As a result, the objects are extremely dim.

Additionally, the satellite must be in terminator mode, where the target is illumi-
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nated by the sun and the observatory is in darkness. Typical low earth orbiting

satellites have maximum linear dimensions on the order of two to ten meters and

orbital altitudes of 200 to 750 kilometers (13:337). It is rare for a satellite to pass

directly over a ground based observatory. As a result, slant ranges can be much

greater. Current limitations due to aperture size and radiometric throughput limit

the slant range at which useful observations can be made to about 1000 kilometers

(23). Beyond this range the detection of satellites is possible, but the image resolu-

tion is poor. The combined effect of the low light levels, slant range, target size, and

atmospheric turbulence make it extremely difficult to gather high quality imaging

data.

A typical target for ground based space surveillance operations is a satellite

which is, in its most elementary form, a collection of rectangular and cylindrical

components. For passive thermal control, most satellites are designed with a highly

reflective coating, such as Optical Solar Reflectors (OSR's) or silver coated Teflon

(13:428). Some sunlight will almost always be reflected toward the observatory.

Large, dark surfaces such as solar panels, however, might be completely invisible to

a ground observer depending upon the satellite's orientation with respect to the sun.

This combination of structures and materials results in a unique image pattern for

each observed pose of a satellite.

Because of this, the problem of satellite pose estimation is closely related to the

field of pattern recognition (11:246). The matched filter has been used successfully

in many applications in this field. The pose estimation problem is very similar to

that of pattern recognition, with one exception. Even with the use of adaptive

optics to partially compensate for turbulence in real time, the images received are

aberrated due to atmospheric turbulence. This turbulence tends to blur the images,

making the problem of pose estimation quite difficult. Research done in this field has

been minimal due to the lack of a database of accurate representations of satellites
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imaged through atmospheric turbulence with photon noise considerations taken into

account.

1.3 Current Knowledge

The problem of pose estimation has been of interest in the fields of machine

vision and robotics for several years. Most of this research has been based on the

use of geometric, CAD models of objects. Cyganski (7:17) asserts that nearly all

current pose estimation routines are based on the idea of searching a large database

of images and determining which has the greatest correlation with the unknown

target image. In most cases, a sum of squared difference methodology is used to

determine the required correlation values. This is especially common in machine

vision for template matching, establishing correspondence in binocular stereo, and

feature tracking in motion estimation (19:12).

Murase and Nayer acknowledged that the appearance of an object is the com-

bined effect of its shape, reflectance properties, pose in the scene, and illumination

conditions (19:6). Their study of "appearance matching" rather than shape match-

ing in the pose estimation problem is unique in that it is the first work that takes

into account lighting conditions as a variable in the problem. Previously, some effort

had been invested in using the Karhunen-Louve technique utilizing the eigenvectors

associated with an image to determine the correlation between images with Princi-

ple Component Analysis (PCA) algorithms. PCA techniques have been successfully

applied to pose estimation problems involving written character recognition and hu-

man face recognition. Murase and Nayer successfully applied these PCA techniques

to determine the pose of three dimensional objects imaged under different lighting

conditions (19:8)

The work of Murase and Nayer, however, deviates from the problem at hand

because their pose estimation routine does not account for the adverse effects of at-

mospheric turbulence. In July 1995, Chang and Hoepner from the Texas Instruments
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Incorporated Defense Systems & Electronics Group issued a status report which out-

lined a technique for satellite pose estimation (6). This pose estimation routine is

based almost entirely on a method proposed by Cyganski (7:17). Cyganski's method

deviates from the more customary database search. It involves the use of an ob-

ject model composed of a set of basis images. The basis images are developed in a

manner such that the projection of an acquired image onto the basis yields samples

of a complex exponential plane wave. The direction cosines of the plane wave act

as a transformation between the object and the model. Direction of Arrival (DOA)

techniques are applied to estimate the target's pose.

Unlike Murase and Nayer, the Texas Instruments study does not consider the

effects of lighting conditions on pose estimation. Their effort is, however, the first to

address atmospheric turbulence as a variable in a pose estimation algorithm. The

report discusses the fact that the imagery they were provided was blurred due to

turbulence, without discussion of the turbulence levels considered or their overall

effect on the pose estimation algorithm (6:4). Additionally, the report states that

their algorithm takes advantage of "the low noise inherent in satellite imagery" (6:4).

In Chapter II of this thesis, the signal to noise ratio is shown to be proportional to

the square root of the photon flux. This implies that the Texas Instruments study

considered imagery at relatively high light levels.

1.4 Problem Statement

This thesis investigates the utility of the use of a matched filter algorithm to

estimate the pose of Low Earth Orbiting (LEO) satellites through varying levels of

atmospheric turbulence and light levels from partially compensated adaptive optics

imagery. It investigates several derivatives of the matched filter to determine the

bounds on their application. By performing this study over a known range of seeing

conditions, a pose estimation algorithm is defined that has a high utility in the

operational environment. Because this thesis represents the first major effort to
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include the effects of target lighting conditions and atmospheric turbulence levels, it

establishes a benchmark in performance against which future studies can be weighed.

1.5 Research Objectives

The objectives of this thesis effort were as follows:

* Develop a database that can be made available to fellow researchers consisting

of multiple unclassified views of three different satellite systems as seen through

an adaptive optics telescope under a series of atmospheric turbulence conditions

and light levels.

* Study the utility of using the matched filter for addressing the satellite pose

estimation problem.

e Examine several derivatives of the basic matched filter to determine which is

the most useful in the pose estimation problem over the wide range of seeing

conditions normally encountered in ground based space imaging.

* Determine the limits of the matched filter for this application, thus providing

a benchmark for future research efforts that pursue other approaches to the

pose estimation problem.

1.6 Approach

These objectives were attained using a systematic approach. First, a set of

images of satellite models at known poses was generated. From these, a database of

accurate representations of the satellites at these poses under various atmospheric

turbulence and lighting conditions through an adaptive optics telescope was created

using AO simulation software. The matched filter, and its derivatives, were applied

to these simulated target images using a database of known images as a reference.

These tests were repeated at several light conditions and atmospheric turbulence

levels. Finally, the results of these tests were used to quantify the effectiveness of
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the different matched filter algorithms and determine the bounds on their use for

pose estimation.

1.7 Scope

This thesis is intended to provide a benchmark for future work in this area.

It evaluates several matched filter algorithms for their utility in the pose estimation

problem. By examining several derivatives of the basic matched filter, this thesis

determines the algorithm with the highest likelihood of correct pose estimation over

a variety of light levels and atmospheric turbulence levels. In doing this, the practical

bounds on the application of the matched filter to the pose estimation problem are

defined.

Unlike more traditional pose estimation research efforts, this thesis does not

focus on the precision of the pose estimation that can be achieved under one spe-

cific set of seeing conditions. Precision on the order of one degree is advertised by

algorithms such as that proposed by Chang and Hoepner (6:19). For most practical

applications, such as determining if a satellite is being maneuvered to a new orbital

plane, this type of precision may not be necessary. Plane changes are usually per-

formed as a series of several maneuvers to conserve fuel. As a result, plane changes

occur over a period of several orbits, with successive passes over a ground station

showing significant changes in attitude (13:149).

Instead, this thesis focuses on the development of a pose estimation algorithm

that is effective over the wide range of seeing conditions that are normally encoun-

tered during ground based space surveillance operations. The precision that is pos-

sible is not explicitly explored in this research. It is hypothesized that this will be a

function of the seeing conditions under which imagery is attained. At the early stages

of development of the pose estimation algorithm presented here, it was deemed more

important to be able to operate under a wide range of conditions. Future research
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can be dedicated to examining and possibly improving the precision that can be

attained by using the algorithm developed in this study.

1.8 Key Results

This thesis shows that the matched filter can be successfully applied to the

satellite pose estimation problem. Of the algorithms considered in this study, the best

results are achieved by utilizing deconvolution techniques followed by the application

of a Sobel edge map before applying the target image to the matched filter.

Results are given over an extremely wide range of seeing conditions. These

results are weighted based on historical data obtained from the Air Force Maui Op-

tical Station (AMOS) to show that, under normal imaging conditions, the matched

filter approach described above can be expected to yield correct pose estimations in

over eighty percent of the trials considered in this thesis. Additionally, it is shown

that a significant portion of errors are between two poses that are very similar in

appearance, such as views of the target about an axis of symmetry. A correlation

value is defined such that a value between 0.0 and 1.0 is assigned for each trial. This

correlation value is a quantitative measure of the similarity between the predicted

pose and the actual pose being imaged, with a value of 1.0 being representative of

a correct pose estimation. When weighted according to the actual occurrence rates

of the seeing conditions, the algorithm developed in this study provides an average

correlation value in excess of 0.98.

Atmospheric turbulence is shown to be a contributor to the degradation of the

matched filter approach. However, the utility of the matched filter is shown to be

more highly dependent upon the light level associated with the target image.

1.9 Thesis Organization

This thesis is organized in the following manner: Chapter II discusses the

theory pertinent to this problem, including the effects of atmospheric turbulence
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and photon noise as they pertain to AO imagery. Additionally Chapter II discusses

the theory of the matched filter as well as some of the post processing techniques

that may be applied to improve the quality of the AO imagery before applying

the matched filter. Chapter III outlines the methodology used in this research. The

observations and data analysis are presented in Chapter IV. Conclusions drawn from

this study and recommendations for further research are discussed in Chapter V.

1.10 Summary

In order to assess the utility of the application of the matched filter to the

satellite pose estimation problem, a series of test images are created under multiple

seeing conditions for an adaptive optics telescope. The basic matched filter, and

several derivatives, are applied to these images both with and without postprocessing

techniques to determine the pose of the satellite from a database of known images.

This thesis determines the most reliable matched filter algorithm for this problem

across a wide range of seeing conditions and define the bounds for its practical

application.
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II. Theory

In Chapter I, the problem of satellite pose estimation using an adaptive op-

tics telescope was clearly defined. The approach taken for this problem is based

on the concept of the matched filter. This research represents an extension of the

theory behind the use of the matched filter for pattern recognition. The effect of

noise on matched filter performance is not generally treated in textbooks on this

subject. However, the matched filter cannot be applied to the satellite pose estima-

tion problem without a firm understanding of noise and atmospheric effects on the

target image. This chapter introduces the key concepts needed to understand these

effects. It describes the matched filter and its application in pattern recognition.

The theory behind this research effort is represented by the union of the studies of

pattern recognition and imaging through atmospheric turbulence.

2.1 The Concept of the Matched Filter

Originally, the matched filter was used as a means of signal detection. The

filtering process usually involves searching through the received signal to find an

approximate match to one of many known signals. In order to detect a known signal

obscured by white noise, the matched filter provides a linear operation to maximize

the power signal to noise ratio (11:246). The one dimensional matched filter is

widely used in signal detection applications such as radar and digital communications

(20:653).

A two dimensional matched filter can be applied to image processing. The

most recent uses for the matched filter lie in the field of pattern recognition. In this

field, the input patterns are assumed to be noiseless. The matched filter is used to

determine if a particular pattern is present in an input signal.

A matched filter is a spatial filter that provides a measure of the level of

correlation between an input image and a known image. By sequentially measuring

10



the correlation between an input image and a database of known images, it is possible

to classify the input properly.

A linear shift invariant (LSI) system is matched to an unknown signal s(x, y)

when its impulse response, h(x, y), is given by (11:246)

h(x,y) = s*(-x,-y). (1)

The asterisk represents the complex conjugate of the function. For a given input,

g(x,y), the output is given by (11:246)

v(x,y) = J g(,q)s*( - x, - y)d~dq. (2)

This function is the cross correlation between g(x, y) and s(x, y).

2.1.1 Use of the Matched Filter for Character Recognition. For the pat-

tern recognition problem, the input g(x, y) is compared to a database of N possible

patterns. These patterns are denoted by sl, S2, s3,...SgN. Pratt (20) discusses an im-

portant limitation of the matched filter in pattern recognition. Often, the correlation

determined by the matched filter is highly dependent upon the relative energies of

the target image and the known image. Both the input signal and the set of possible

patterns must be energy normalized in order to account for this energy dependency.

For any image, g(x, y), this energy normalization is accomplished by

g'(x, y) = g(x' Y) (3)
f f g(xy, Y) 2dxdy

The energy normalized input signal is sequentially applied to the filters S*, S2,

S3*,...SJ, which correspond to the N possible patterns. In this document, Si rep-

resents the Fourier transform of the pattern defined spatially by si. The largest
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output represents the highest correlation with the input image. The use of the basic

matched filter for pattern recognition is described in Figure 1 (11:248).

Outputs

V1

V2

ff f IS 2Fdd dd?

/f f lg(x, )fd d, Input -- Vk

Figure 1. Block Diagram Representation of the Matched Filter as Applied to the
Pattern Recognition Problem

2.1.1.1 Justification of the Choice of Using a Matched Filter for Satel-

lite Pose Estimation. A common method for comparing images in the spatial

domain is to measure the difference between them using a normalized mean-square

error method (20:685). This is the basis for template matching techniques described

by Pratt (20:651). The normalized mean square error technique is described math-

ematically by Equation 4.

jF(j, k) - -F(j, k)12  (4)
6 NMSE = IF(j, k)1 2

F(j, k) and ft(j, k) represent two images to be compared.
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From Equation 4, it is apparent that this is a pixel by pixel determination of the

difference between the two images. This requires both images to be of the same scale

size and be centered at the same point in the pixel array. From an operational point

of view, the scaling can be accounted for by methods described in Section 2.1.2.3.

However, the location of the target within the image plane is extremely difficult to

control given that the target is not stationary when imaging LEO satellites (15:1-2).

As a result, pixel by pixel differencing is not a feasible alternative.

Pratt (20:656) demonstrates a key property of the matched filter which makes

it ideally suited for image classification from remotely sensed data. The matched

filter is shift invariant. Under ordinary circumstances, the matched filter is defined

such that the origin of the output plane becomes the point of no translational offset

between the known reference signal and the input signal.

For the case where the target image consists of an object from the known image

database, offset by distances Ax and Ay, it is described by a modified input function

of the form

g(x,y) = s(x + Ax, y +Ay). (5)

The output of the matched filter for this target/reference pair is given by

v(x,y) = g( + Ax, 7 + Ay)s*($ - x,q - y)ddq. (6)

From this, a correlation peak occurs when x = Ax and y = Ay in the output plane

(20:656). This indicates the translation of the input image relative to the reference

image.

For the study of satellite pose estimation from space surveillance imagery, the

magnitude of this shift is not important. It is merely the result of the pointing

accuracy of the imaging device. The shift invariance is, however, the key benefit

gained from the application of the matched filter to this problem. The translation

invariance of the matched filter makes it ideally suited for this application.
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2.1.2 Deficiencies of the Matched Filter Approach for Pattern Recognition.

Energy dependency is one of three key deficiencies that are encountered when

applying the matched filter to the classical pattern recognition problem. Goodman

(11:251) demonstrates that the matched filter is also extremely sensitive to both

rotation and scale size.

2.1.2.1 Sensitivity to Energy Content. As mentioned in Section 2.1.1,

Pratt points out that the matched filter can be inefficient at discriminating between

objects of similar size, but with different energy content and shape. In his text,

he provides the example of a white hexagon and a white circle, both on a black

background. Even after energy normalizing both signals, he asserts that the normal

matched filter may not be able to reliably distinguish between the two. The proposed

solution to this problem is the use of a variation of the basic matched filter. Basically,

this consists of utilizing an edge enhancement routine before applying the matched

filter.

In 1970, Sobel introduced one of the most widely utilized edge enhancement

techniques (25:125). Sobel's approach draws from the Roberts Cross operator that

was introduced in 1965. The Sobel operator is based upon the gradient operation

defined by Equation 7.

grad(f) = afx + fy (7)

The value of the modulus of the gradient, Igrad(f)l, is locally maximized at

edges in the image. Therefore, by establishing an appropriate tolerance value, it

is possible to use the Sobel technique to define the edges while masking all other

features in an image. The Sobel operator is especially well suited for the pose esti-

mation problem because its edge enhancing capabilities are not direction dependent.

The application of the Sobel edge map to the target image and known image before

applying the matched filter will greatly improve the results that can be obtained in

the noiseless pattern recognition problem (20).

14



-10 1 -1-2-1
-202 000
-101 121

Figure 2. Sobel Operator Masks
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Figure 3. Generalized Spatial Filtering Mask

In practice, the Sobel operation can be thought of in terms of sequentially

sliding two 3 x 3 pixel masks over the image. These masks are defined by Figure 2

(15:2-16). A generalized form of a spatial filtering mask is defined in Figure 3. If

this mask is applied to a set of pixels within an image, P1, P2,.. • ,P9, the center pixel

is replaced according to Equation 8 (15:2-15).

9

P5,new = Z(mn X p,) (8)
n=1

The results of this thesis are based on the Sobel edge map routine that is built into

the MATLAB Image Processing Toolbox (26).

The difficulty in discrimination between two similar objects as described in

the circle-hexagon example above is of vital importance in the satellite pose estima-

tion problem. In images against the black background of space, the highly reflective

surfaces of a satellite can be very similar to the idealized white geometric shapes

in Pratt's example. Many satellites share similar features such as cylindrical bod-
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ies and large, rectangular solar panels. Additionally, there are size limitations on

satellite design that are imposed by the shroud size of the particular booster used in

the launch segment of the mission (13:674). The maximum linear dimension of most

satellites is on the order of two to ten meters. This, combined with the symmetry in-

herent in many satellite designs, can result in exactly the same kind of complications

encountered in Pratt's example.

It is worth noting that research is ongoing in the arena of edge detection.

Law, Ito, and Seki have noted that edges are often distorted in imagery, making

fundamental algorithms, such as that of Sobel, difficult to apply. In real world

applications they assert that edges may be (14:483):

* Gradual in transition

* Between areas of non-uniform intensity

* Between areas of similar intensity

* Noisy

* Any combination of the above

For strong deviations from the ideal case, they propose using "fuzzy reasoning"

techniques to mimic the edge detection capability of the human "eye-brain" system

(14:482).

Additionally, Qian and Huang have proposed an edge detection scheme based

on a Laplacian of Gaussian methodology (12:1215). They show their algorithm to be

optimal in terms of both signal to noise ratio (SNR) and edge localization accuracy.

The advantage of their technique is that it detects edges based on edge segments

rather than edge points. This significantly reduces the effects of random noise on

the results (14:1220).

For this study, only the Sobel edge map is utilized. This thesis is intended to

represent a baseline study with easily reproducible results. The Sobel edge map is a

time proven method that is easily implemented.
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2.1.2.2 Sensitivity to Rotation of the Input. The rotational sensitivity

of the matched filter is an important consideration in the pattern recognition field.

When the input image is rotated, its response to the correct matched filter is greatly

reduced. The degree of error due to rotation is largely dependent upon the structure

of the target. As an example, the rotation of the letter "0" has a much less significant

effect on a matched filter routine than a similar rotation of the letter "E". (20)

This rotation sensitivity is the key to the matched filter that is exploited in this

thesis to solve the satellite pose estimation problem. The target's relative position

to the observatory affects its apparent pose. The apparent pose is a result of the

dynamics involved in the satellite's orbit and the kinematics defining its orientation

relative to a non-rotating coordinate system with its origin at the satellite's center

of mass. The ultimate goal of the pose estimation algorithm is to be able to de-

termine the target's orientation with respect to some predefined, fixed coordinate

system. For this reason, an algorithm must be developed to automatically relate

the apparent pose as viewed from the observatory to the pose as it would be viewed

from this fixed reference point. This requires a technique to separate the dynamic

and kinematic components of the apparent pose as measured from the observatory.

A comprehensive summary of the mathematics describing the motion of a satellite

with respect to a ground station is provided in the Larson and Wertz text (13:114).

For this study, it is assumed that this algorithm exists and is transparent to the user.

This thesis focuses on the determination of the apparent pose as measured by the

ground based observatory.

2.1.2.3 Sensitivity to Scale Size. The scale size sensitivity of the

matched filter must be considered when applying it to the pose estimation problem.

For a given telescope with fixed imaging parameters, the scale of the image is a

function of the slant range to the target. This distance can be calculated from the

satellite's ephemeris data and the geographic coordinates of the observatory (13:114).
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Two major options exist that may be used to minimize the effects of scale sensitivity

to the matched filter.

Goodman discusses the Mellin transform and its use for overcoming the scale

sensitivity of the matched filter (11:252). The Mellin transform is described mathe-

matically by

M(s) = j g( )sld<, (9)

where s is a complex variable. If s is restricted to be given by s = j2lrf, a basic

relationship between the Fourier transform and the Mellin transform is given by

M(j27rf) = L g(e-x)e-j 2 fxdx. (10)

This is clearly analogous to the one dimensional Fourier transform for a function

g(x) which is given by Equation 11 (9:111).

F(g(x)) = J- g(x)e-j 2 fxdx (11)

According to Goodman, the magnitude of the Mellin transform can be shown

to be scale invariant (11:253). This, along with the fact that the Mellin transform

can be performed as the Fourier transform of a stretched input, makes it an option

for avoiding the sensitivity of the matched filter to scale size.

Computationally, the Mellin transform is more difficult than using the Fast

Fourier Transform associated with the more conventional matched filter. Because

there is very little existing data on the satellite pose estimation problem, it was

decided that the simplest feasible method should be studied in order to provide a

baseline for future studies. As a result, the Mellin transform method is beyond the

scope of this thesis.

An alternative technique is to develop a large database of known images in

different poses and with different scale factors. This approach allows for the direct
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implementation of the computationally efficient Fast Fourier Transform (FFT) al-

gorithm. For a given satellite, a database can easily be created using the telescope

parameters and a range of possible slant ranges to the target. The actual slant range

to a target can be determined from the ephemeris data. With this information, the

appropriate subset of the target's matched filter database can be selected for testing

in the pose estimation algorithm. The test cases examined in this thesis all assumed

a 500 kilometer slant range and are representative of one such subset of this database.

2.2 Noise Considerations

The previous section provides insight into the deficiencies that are specific

to the matched filter. Noise is inherent in any imaging system and must also be

considered when using the matched filter for this application.

In its simplest form, the image of the target, i(x, y), is described by

i(x, y) = Jj o( , 77)s(x - , y - 97)dd77, (12)

where o( , 7) and s( , 77) represent the object and point spread function, respectively.

By taking the Fourier transform of both sides of Equation 12, we obtain the spatial

frequency domain representation given by

I(fM, f) = S(fY)O(fyf)" (13)

Using the frequency representation, the spectrum of the original object would

be given by Equation 14 in the absence of noise.

O(f , y) -- SY I, M) (14)
1 (f,)
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This is clearly the same as passing the received image through a linear shift invariant

filter of the form
1H(f.,fy,) - Sf,)"(15)

This rather simple filter is known as the inverse filter. The inverse filter,

however, demonstrates a fundamental problem associated with signal processing. It

fails to account for the fact that any received signal is inherently noisy. The inverse

filter will actually tend to boost the effects from parts of the image with a low signal

to noise ratio (SNR). The result is an output signal that is dominated by noise.

S(f,, fy) represents the Optical Transfer Function (OTF). The OTF is es-

sentially a low pass filter that attenuates the higher frequency components in the

received signal. It should be noted that the OTF is a time dependent random vari-

able in the problem of imaging through atmospheric turbulence (27:1-2). Because

information about the edges of the target is contained in the high spatial frequen-

cies, the image is inherently blurred. Ideally, it would be possible to use the inverse

filter described above to remove these effects. However, frequencies associated with

points where the OTF is zero are forever lost. This includes all frequencies above

the OTF cutoff frequency. Additionally there exists an upper frequency limit due

to noise amplification where the OTF correction begins to degrade the image. To

minimize the effects of noise amplification, it is possible to modify the inverse OTF.

By attenuating some of the higher spatial frequencies, some of the noise effects can

be suppressed. However, since edge information is contained in the higher spatial

frequencies, some of the image details are lost.

One common technique for overcoming these noise effects is to pass the output

of the inverse filter through an additional filtering step (21:158). The new represen-

tation of the filter is shown by

O'(f) = 0(f) . H'(f). (16)
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Figure 4. Basic Tophat and Cone Filters

Two commonly used forms for this filter are the cone filter and the tophat filter.

The cone filter is defined by

1 -If/fo, if IfI -f;
{ o, otherwise (17)

while the tophat filter is simply a low pass filter described by

1,if If1 _< fA;
Htophat(f) = { othewis (18)

The cone filter and tophat filter are depicted in Figure 4.

It is clear that a more realistic representation of the received image of the

target is given by

i(x,y) = o(x,y) * s(x,y) + n(x,y), (19)

where n(x, y) represents the random noise in the image.

Assuming a known power spectral density for both the object and the noise,

it is possible to create a Wiener filter. The Wiener filter is a linear restoration filter

that minimizes the mean square error between the object and the received estimate

of the object. The transfer function for the Wiener filter (11:259) can be shown to
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be
Hw (f., = z*S-, (20)

IS(f , h)12 + 1 (20)

where (% and (% represent the power spectral densities of the noise and the object,

respectively. When the signal to noise ratio is high, this expression reduces to the

inverse filter defined above. This provides a basic method for reducing noise effects

in the image.

However, the Wiener filter has two key deficiencies for imaging through atmo-

spheric turbulence. It is unlikely that the power spectral densities for the object

and the noise will be known. Secondly, better performance could be achieved with

a filter that is capable of adapting to the changing blur caused by the turbulence.

2.3 Imaging Through the Atmosphere

Imaging satellites through the atmosphere presents several new variables into

the classical pattern recognition problem. This section introduces the effects of

atmospheric turbulence and photon flux considerations. Additionally, it introduces

techniques that can be used to overcome some of the image quality degradation

caused by these effects.

2.3.1 Turbulence and Target Image Blurring. The primary source of degra-

dation in any type of telescopic image is atmospheric turbulence. Atmospheric tur-

bulence levels are quantified by the Fried parameter, r,. The Fried parameter is the

effective diameter of a diffraction limited telescope that would yield the equivalent

resolution in the absence of atmospheric turbulence. The value of r, is independent

of the physical dimensions of the telescope (15:1-2). However, r, is known to vary

greatly with time and location. Figure 5 shows the range of r, values that were

measured at an observatory at Capella, United Kingdom over a 40 minute period on

26 December 1993 (4). Average values of r, at the Air Force Maui Optical Station

(AMOS) are 12 cm in the summer and 10 cm in the winter (3).
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Figure 5. Temporal Variation of r, at Capella, United Kingdom

An additional complication in imaging LEO satellites is that they are not

stationary. The target'is viewed through different parts of the atmosphere as it

travels in its orbital plane. Each segment of the atmosphere varies statistically from

other parts of the atmosphere, typically with different values of r,. This, along with

varying angles between the sun, satellite, and observatory results in a variation of the

received image with time. As a result, the time duration of an exposure is limited.

Multiple short exposure images must be measured and averaged for post-processing

(15:1-3). Modern imaging systems create an image by averaging multiple frames.

There is a practical upper bound to the number of frames which can be acquired.

It is important, however, to note that SNR in the image is improved with multiple

independent frames according to (24:4232)

SNR'= M × SNR, (21)

23



where SNR represents the single frame signal to noise ratio and M represents the

number of frames. Because a typical LEO satellite's aspect relative to the telescope

changes significantly on the order of every 3 to 10 seconds, there is a finite limit on

the number of frames that can be obtained for averaging (27:1-1).

2.3.2 Adaptive Optics. In the early 1950's, the first short exposure images

through the atmosphere of objects in space became available. These images were

taken over a time frame on the order of milliseconds to essentially "freeze" the

effects of atmospheric turbulence. These measurements yielded a series of "speckled"

images. The original efforts to circumvent the effects of atmospheric turbulence

focused solely on post processing techniques. This collection of techniques is now

referred to as "speckle imaging" (21:123). Speckle imaging techniques suffer from

poor SNR performance for small ensembles of images, such as those obtained during

satellite surveillance operations.

The use of an adaptive optics (AO) telescope can greatly reduce the effects

of atmospheric turbulence and overcome the SNR limitations inherent in speckle

imaging. The goal of an AO system is to detect deformations in the incident wave-

front and use a deformable mirror (DM) to make the appropriate compensation. A

schematic of a typical AO system is shown in Figure 6 (21:9).

Early work in the field of adaptive optics focused only on tilt correction. Tilt

correcting telescopes utilize a mirror that can be moved about two orthogonal axes

to correct for a random tilt that is induced by the atmosphere (4). Eighty seven

percent of the power of the wavefront fluctuations resides within this induced tilt

(21:180). Tilt displaces the image within the observed image plane, but does not

corrupt it in any other manner. In a modern AO system, tilt correction is generally

used as the first phase in the correction. The tilt correction mechanism is responsible

for "centroiding" the image (keeping it centered on the image plane) (15:1-4).
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Figure 6. Schematic of a Typical Adaptive Optics System
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The turbulence corrupted wavefront enters the telescope and a sample of the

wavefront is collected by a Wavefront Sensor (WFS). The WFS is used to sense the

aberration at a high temporal frequency. One common type of WFS is the Shack

Hartmann WFS shown in Figure 7 (4).

The Shack Hartmann WFS uses an array of microlenses to create a pattern

of spots on a two dimensional detector array. The difference between the locations

of these spots and those that would be present if the incident wave was planar and

normally incident is proportional to the tilt in the corresponding subaperture (1).

The wavefront tilt is defined by Equation 22 (16).

= tan 1 (I dx (22)

9, is the tilt associated with the nth subaperture, dx is the spot location determined

by the detecting the location on the subaperture detector with the highest intensity

value, and f, is the focal length of the WFS assembly.
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The measurements made by the WFS outputs are used to determine the shape

of the mirror that is required to counteract the effects of the turbulence. This

position information is processed and the appropriate commands are sent to the

actuators located behind the DM. The figure of the DM is adjusted to approximate

the conjugate of the turbulence induced wavefront which is incident on the system

(24:4227). By doing this, the resulting wavefront more closely represents what would

be incident upon the system in the absence of atmospheric turbulence (21:178).

If an ideal adaptive optics system could be built, it would yield diffraction

limited imagery. An imaging system may be defined to be diffraction limited if "a

diverging spherical wave, emanating from a point source, is converted by the system

into a new wave, again perfectly spherical, that converges toward an ideal point in

the image plane, where the location of the ideal point is related to the location of the

original object point through a simple scaling factor, a factor that must be the same

for all points in the image field of interest if the system is to be ideal." (11:128)

In practice, diffraction limited performance is not realizable, even with the use

of AO technology. For a real AO system the output phase is characterized as having

a variance that is much smaller than that of the input phase. The result is a smaller

aberration and improved image quality.

Clearly, neither the post processing techniques associated with speckled imag-

ing nor the use of an AO telescope can completely negate the effects of imaging

through a turbulent atmosphere. Speckle imaging is limited by the signal to noise

ratio of the estimating routine used. AO systems face several key limitations due to

factors such as the finite spatial sampling associated with the wavefront sensor, the

limited degrees of freedom in the deformable mirror, and the finite time required for

the system to respond to variations in the incident signal. The effectiveness of an

AO system is also affected by errors and noise in the WFS measurements. These are

especially significant at low light levels (15:1-5).
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There is an economic and practical limit on the number of actuators that can

be built into an AO system. A fully compensated AO system has approximately

one WFS subaperture and one DM actuator per atmospheric coherence diameter,

ro (24:4227). Roggemann and Welsh (21:10) state that a 4 meter telescope oper-

ating with r, = 10 cm would need approximately 1250 DM actuators and WFS

subapertures to produce fully compensated imagery. This would utilize 10 cm spac-

ing with the subapertures measuring 10 cm x 10 cm. Doubling these dimensions to

20 cm yields only partially compensated imagery, but requires only about 315 DM

actuators and WFS subapertures.

2.3.3 Hybrid Imaging and Deconvolution. In an effort to combine the mer-

its of both speckled imaging and AO technology, several hybrid imaging techniques

have been developed. Deconvolution is one of the primary hybrid imaging tech-

niques (21:247). A schematic of a typical hybrid imaging system is shown in Figure

8 (21:11).

Deconvolution relies heavily on the idea that high spatial frequency information

with a good signal to noise ratio exists within a compensated image even though

that image appears blurred. This occurs because the optical transfer function for

the atmosphere/telescope interface is highly attenuated. Deconvolution may be used

to reduce some of these effects and produce a sharper image. However, this approach

has a signal to noise ratio induced limit on its effectiveness, above which noise effects

are significantly amplified.

The foundation for this method lies in the expression for the signal to noise

ratio of the detected image spectrum, SNRD(f), with a random OTF given by

(21:271)

SNRD(f) =, / f)E{H f)} + p(f (23)

/k + (k)2 I (f4 var{H(f)} + pn
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In this expression, k is the average number of photoevents per image, O(f) is the

normalized object spectrum such that it has a value of unity where f = 0, P is the

number of pixels in the image, and a,, is the Root Mean Square (RMS) value of the

additive noise in the detector pixels expressed as a number of photoevents. H(f)

is the system OTF. E{.} is the statistical operation of expected value and var{.}

represents variance.

As k increases toward infinity, the value of SNRD(f) converges to the signal

to noise ratio of the random OTF. If the exposure time is long enough so that the

average OTF during the exposure time closely approximates the actual average OTF,

the variance term in the expression above disappears, leaving

KJE{H(f)} 1O.(f~l
SNRD(f) = E (24)

Roggemann states that a sufficiently high signal to noise ratio at high frequencies

allows for the deconvolution of images that are measured with highly attenuated

OTF's (21:272). This provides the basis for the use of deconvolution for image

reconstruction.

In practice, deconvolution is performed by simultaneously imaging the target

and a reference star. In this thesis, a method described by Roggemann (24:4232)

is used. The reference star is representative of an ideal point source. Of course,

the target and the reference star are imaged through different portions of the at-

mosphere. However, these "slices" of the atmosphere are in the same vicinity, so

the atmospheric effects in both are assumed to be very similar. The image of the

reference star represents an approximation to the point spread function (PSF). The

Fourier transform of the PSF is known as the Amplitude Transfer Function (ATF)

(11:135). The OTF is simply the normalized autocorrelation function of the ATF

(11:139). Both the target image and the image of the reference star are normalized
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to have an integrated intensity of unity using

I ,j (25)
I Ej 256 E,256 ,'

.,i=l Ii. l

where I represents either the target image or the reference image. The Fast Fourier

Transform is used to create the frequency representations of both images. Once these

are normalized, the inverse filter is applied using

0 R(7,) (26)

where O(,,,q) and R( , 7) are the frequency domain representations of the target

image and the reference image, respectively.

As discussed in Section 2.2, noise effects will dominate 6( , 77) in regions with

a low signal noise ratio (SNR). To minimize these effects, a cone filter is applied to

0( , 7) with a cutoff frequency that is defined by the minimum SNR allowed. This

minimum SNR is defined by the user. The establishment of this cutoff value for

SNR represents a tradeoff between the reduction of noise effects and the maximum

spatial frequency that is maintained in the image. Past experience has shown that

a cutoff SNR value of 2 is suitable for this type of study. The determination of

the appropriate Modulation Transfer Function (MTF) width using radially averaged

SNR data is described by Figure 9.

The inverse Fourier transform of the result of this filter yields the deconvolved

image of the target. A comparison of an original target image and a deconvolved

image are shown in Figure 10. These images are simulations with r, = 10 cm.

Negative images are depicted for clarity.

Clearly, by using the atmospheric effects measured in the reference image to

compensate for similar effects in the target image, it is possible to vastly improve the

quality of the target image. This assumes that the SNR defined by Equation 24 is

sufficiently high. Since SNR is approximately proportional to VK, the effectiveness
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(a) (b)

Figure 10. Results of Utilizing Deconvolution Techniques on a Sample Image:
(a) Measured Image (b) Deconvolved Image

of deconvolution is dependent upon the photon flux incident on the telescope from

the target.

2.3.4 Visual Magnitude. The photon flux from an orbiting satellite is

generally quantified by its visual magnitude, M,. M, is a measurement of luminous

flux density within the visible spectrum. Values for M, vary from 0 upward, with 0

being the brightest. Visual magnitude is related to spectral irradiance on the ground,

E,8 ,t(A), by (23)

Esat(A) = Esun(A) x (1.944 x 10-") X 10 -OM WattS/m 2 /_Zm, (27)

where E0(A) is the spectral irradiance of the sun on the ground at the imaging

wavelength. From this, the rate of photoevents per unit time, R, can be established.

This rate is described mathematically by

R = Esat SRAA- ) 0
- ° m7 (28)

R= he(

,

33



where AA represents the imaging bandwidth, SR represents the aperture area, -A

and -r represent the transmission of the atmosphere and optics respectively, r7 is the

quantum efficiency of the detector, h represents Plank's constant, c is the speed of

light in a vacuum, and )i is the imaging wavelength. Given the integration time of

the imaging system, this rate of photoevents can be converted to a photon count in

the received image, K.

2.4 Image Processing Techniques

Even with the application of hybrid imaging techniques, the target image is

still obscured by noise and turbulence effects. Several image processing techniques

can be utilized, dependent upon the purpose of the study. In this thesis, an emphasis

is placed on the use of the Sobel edge map on the target image before applying it to

the matched filter. The inherent blur in AO imagery taken through the atmosphere

can greatly affect the edge determination. In the case of hybrid imaging, this blur

can be a function of the degree of benefit gained by applying deconvolution. As

described above, this is directly related to the photon flux dependent SNR in the

received target image.

Signal to noise ratio decreases with increasing values of visual magnitude. As a

result, the quality of the deconvolved images originating from these signals can still

be poor. This dramatically limits the effectiveness of the Sobel edge map. Tukey

developed a nonlinear image processing technique known as the median filter that is

useful for noise suppression (20:294).

The median filter algorithm is performed by sliding a square mask composed of

an odd number of pixels across the image. The center pixel is replaced by the median

of the grayscale values covered by the mask. This is described mathematically for a

3 x 3 median filter by Equation 29.

P5,,,, = median(ml, m2, ... m9) (29)
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(a) (b)

(C) (d)

Figure 11. Blurring Effects Due to the Application of a Median Filter: (a)Original
Image (b)Noisy Image (c)3x3 Median Filter (d)7x7 Median Filter

The values for mi correspond to the values in the generalized spatial filter mask

given in Figure 3. Each value in the mask defined by m takes on the grayscale value

underneath it as it is moved across the original image.

The size of the mask is picked such that it is the minimal size necessary to

provide the desired noise suppression while minimizing the associated blur. Larger

masks tend to yield excessive blurring within the resulting image. This blurring is

demonstrated in Figure 11. This figure shows a noise free image, the image with

Gaussian noise added, and the results of applying a 3 x 3 median filter and a 7 x 7

median filter. Negative images are displayed for clarity.
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This blur can result in a dilation of the image. For many applications, the

extent of this dilation is negligible. This can, however, be a limitation for its utility

with the matched filter because of the scale sensitivity described in Section 2.1.2.3.

When the Sobel edge map algorithm is applied in conjunction with the matched

filter, this can be treated in a manner applied by Pratt to the template matching

problem (20:651). By thickening the resulting edges, effects due to dilation can be

minimized.

2.5 Summary

This chapter included an introduction to the matched filter and its derivatives.

It discussed the key deficiencies of the matched filter and ways in which they can be

overcome. Additionally, this chapter provided an introduction to several techniques

that can be used to improve the signal to noise ratio of a received image. Finally,

it introduced the concept of the adaptive optics telescope and presented the basis

for reconstructing an image using deconvolution. Several basic image processing

techniques were also introduced. The following chapter demonstrates how these

concepts were applied to the satellite pose estimation problem.
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III. Methodology

3.1 Introduction

The theory presented in Chapter II provides a solid foundation for the matched

filter techniques for satellite pose estimation. The present chapter discusses how this

theory was used to obtain the results that are presented and analyzed in Chapter

IV.

The following topics are discussed:

* Satellite Model Development

* Model of the Adaptive Optics Telescope

* Seeing Conditions

* Creation of the Test Image Database

* Test Procedures

The matched filter code and image processing techniques applied were written

completely in MATLAB and the associated toolboxes except where noted. In order

to yield reproducible and consistent results, only the default parameters were used

as input to the built in MATLAB functions.

3.2 Satellite Model Development

A database consisting of models of three different satellites was developed. Un-

classified computer models of the Defense Meteorological Satellite Program (DMSP),

an ocean reconnaissance satellite (OCNR), and a fictitious satellite (Chucksat) were

made available by the National Air Intelligence Center (NAIC).

Each vehicle's X, Y, and Z axes were defined within the pre-existing satellite

models. For consistency, no attempt was made to develop a standard body fixed

coordinate system with axes aligned along the velocity vector, earth pointing vector,
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and pole vector. The goal for this study was to develop a database of images that

are representative of the types of structures that are common on low earth orbiting

satellites. So, this approach to model development was determined to be sufficient.

For each of the models, a constant X-axis rotation of 90 degrees was selected.

Y-axis rotations were variable through 30 degrees, 45 degrees, and 60 degrees. The Z-

axis rotations were varied from -150 degrees to +180 degrees at 30 degree increments.

These rotation angles were selected to keep the number of test cases for this study

reasonable for the allowed time frame while providing a sufficiently sized database to

produce meaningful results. The X-axis and Y-axis rotations are somewhat arbitrary

in nature. These were, however, determined to be sufficient for this study. The Z-axis

approximates an axis of symmetry in the satellite designs considered in this study.

As discussed in Section 2.1.2.1, the matched filter can easily confuse two objects of

similar shape and size. This effect will, in general, be most important for satellite

rotations about the axis of symmetry. Because of this, a full range of Z-axis rotations

was considered.

The final product consisted of a database of 36 different poses for both Chucksat

and DMSP. It should be noted that the 60 degree Y-axis rotation models of OCNR

were cropped to varying extents with each Z-axis rotation. As a result, they were not

considered to be realistic representations of satellite structures and were not used

for this study. Only 24 poses of OCNR were considered.

3.2.1 Model Format. The satellite models were originally created using

the SatAC Modeling Tool software package provided by the Air Force Phillips Lab-

oratory Satellite Assessment Center (PL/WSA), Kirtland AFB, New Mexico. This

software package provides a means to model a target in any desired three dimen-

sional orientation. Additionally, the models are constructed to accurately represent

the material composition of the actual satellite. This results in a higher fidelity
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simulation of the target by providing the correct relative brightness of the satellite

components under various conditions.

The models were developed at NAIC and were originally stored in Tagged

Image File Format (TIFF). Each TIFF file was converted to a 256 x 256 pixel array

of grayscale values. These arrays were then reshaped into 65,536 x 1 column matrices

for use in the Hysim3 code. Hysim3 is a program developed at AFIT to simulate

imaging through atmospheric turbulence.

3.2.2 Model Scaling. Hysim3 automatically scales the satellite models for

a diffraction limited telescope. As a result, it is necessary to appropriately scale

the non-aberrated images in order to use them as the known image database for

matched filter approach. For this study, it was determined that all tests could be

run at a fixed scale. In a practical application of this research, the target's ephemeris

data would be available and would provide a highly accurate estimation of the slant

range from the ground based observation point. For the purposes of this study, the

following data was used to fix the scale factor:

Imaging Parameter Value Used
Maximum number of subapertures
across mirror, N.,b 10
Mirror diameter, dmirror 1.0 m
Length of one side
of the object array, Lobj 10 m
Range to Target, Rta, 500 km
Imaging wavelength, Ai 0.7 /fm

Table 1. Parameters Used to Determine the Appropriate Scale Factor

The diffraction limited cutoff frequency for the telescope is determined using

fma. = dmirror (30)Ai x Rta"(
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The spatial frequency sample spacing across the optical transfer function (OTF)

array is given by

df= f.fa (31)
ROTF'

where ROTF is the radius of the OTF measured in pixels, defined to be

ROTF = (Ispace - 1) X Nsb + 1, (32)

where Ispace is a constant that internally sets the number of pixels across a subaper-

ture in the Hysim3 routine. A value of 5 was shown in the Hysim3 documentation

package to be sufficient for the 1.0 meter telescope considered in this study (8:14).

The sample spacing in the object array is given by

dx = Lobj (33)
Lp'

where Lp is the number of pixels along one side of the object array. The spatial

frequency sampling in the object Fast Fourier Transform array is then defined by

1.0
du - dx x (34)

The scale factor is then defined by

Sfac df (35)

This results in a scale factor of 0.714286 for the images used. Hysim3 automatically

generated the scaled image without noise and atmospheric effects for each satellite

model. The scaled images then comprised the known image database used as a

reference for the matched filter algorithm.

3.2.3 Model Storage. In order to minimize the computational time required

for the matched filter tests, the matched filter associated with each known image
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was created and stored rather than creating the filter each time a test was run.

Because Pratt discusses the advantages of using edge maps with the matched filter,

the matched filter associated with the Sobel edge map of each known image was also

created and stored. The Sobel edge map was created using the default values for the

tolerance that are included in the MATLAB Image Processing Toolbox (26). This

was done so that the results of this research could be easily reproduced.

To reduce the memory requirements and computational time for the tests, the

required data was written to a compact disk. The original 256 x 256 images, the

scaled images, the matched filter associated with each of the scaled images, and the

matched filter associated with the Sobel edge map of each scaled image were stored

on a CD. This provided an efficient method to store and read this data without

requiring a large amount of computer memory.

3.3 Model of the Adaptive Optics Telescope

For this study, an adaptive optics telescope with the following parameters was

simulated.

Imaging Parameter Value Used
Mirror diameter 1.0 meter
Number of Subapertures Across Mirror 10
Wavefront sensor wavelength, A, 0.6 ym
Imaging wavelength, Ai 0.7[m
Number of independent frames 50

Table 2. Description of the Adaptive Optics Telescope Used in This Study

Tilt correction was utilized for all test cases examined. All satellite images

were assumed to be of objects with a length of 10.0 meters. It was assumed that

there was no delay between sensing an aberration and correcting for it with the AO

system.
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Figure 12. Historical Data for r, Values Encountered When Imaging LEO Satellites
at AMOS

3.4 Seeing Conditions

Seeing conditions are defined to be the combination of atmospheric turbulence

levels and target illumination levels through which imagery is attained. A wide

range of seeing conditions may be encountered in ground based space surveillance

operations. This research attempts to examine pose estimation across a wide range

of these conditions.

3.4.1 Turbulence Levels. As previously discussed, the quality of the images

received is largely dependent upon the level of atmospheric turbulence present during

the observation. Typical values for Fried's parameter at Maui are in the range of five

to eleven centimeters at a wavelength of 550jm (23). Historical data for ro values

encountered when imaging LEO satellites at AMOS was obtained and is presented in

Figure 12 (2). For this study, r, values of 7, 10, and 15 cm at an imaging wavelength

of 500[tm are considered.

42



60

50

40
.Qo

030-

E
20

10

2 0 2 4 6 8 10 12 14
Visual Magnitude

Figure 13. Historical Data for M, Values Encountered When Imaging LEO Satel-
lites at AMOS

3.4.2 Light Levels. Image quality also depends on the amount of light

reflected by the target toward the observatory. Objects are classified by their bright-

ness using visual magnitude, M,. Typical values for M, when imaging LEO satellites

are in the range between 2 and 5. Geosynchronous Earth Orbiting (GEO) satellites

typically have visual magnitudes on the order of 14 to 15 (23). At this low light level,

detection is possible but very little usable shape information about the target can be

attained because the resolution within the imagery is often greater than the satellite

dimensions. Historical data on the visual magnitudes of LEO satellites imaged at

AMOS was obtained and is presented in Figure 13 (2).

Visual magnitudes of 0, 4, 8, and 12 were considered in this study. Table 3

shows the parameters that were used to determine the photon flux for the light levels

considered. The average number of photons per image and the number of photons

per subaperture per integration time are shown in Table 4. These calculations were

performed using Equation 28.
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Parameter Value
Spectral Irradiance of 1430 Watts/m 2 / ,m

the Sun at Ai
Spectral Irradiance of 1750 Watts/m 2 im
the Sun at A,
Imaging Bandwidth 0.07[m
Wavefront Sensor Bandwidth 0.12pm
Collecting Aperture Diameter 1.0 m
Length of One Side of the 0.1 m
Square Wavefront Sensor
Combined Transmission, T-ar,,9 0.5
Integration Time 0.01 sec

Table 3. Parameters used for Light Level Calculations

Visual Magnitude 0 4 8 12
Average number of photons per image 26910117 675952 16979 426
Average number of photons per
subaperture per integration time 616118 15476 389 10

Table 4. Incident Photon Flux as a Function of Visual Magnitude

3.5 Creation of the Test Image Database

The test image database was created using Hysim3. Hysim3 is a program that

was created at the Air Force Institute of Technology to simulate the effects of atmo-

spheric turbulence. It is capable of simulating both the imagery of a point source

and an extended object. In the case of an extended object, the program automati-

cally scales the image so that the frequency sampling of the Fast Fourier Transform

of the object matches the frequency sampling of the Optical Transfer Function, as

described by Equations 30 to 35. Based on the simulation parameters defined in

the input file, Hysim3 simulates the user defined number of frame realizations. For

this study, the number of frame realizations was set to 50 for all test cases. Since

SNR is improved by a factor of the square root of the number of frames, this value

was picked because it is representative of the maximum number of frames that can

reasonably be attained for this type of imagery. The code calculates phase screens

using a Gaussian random number generator. The Wavefront Sensor (WFS) model

44



determines the slopes in the wavefront across the WFS subapertures. It utilizes

a least squares reconstructor to map the WFS phase difference measurements to

the deformable mirror (DM) actuator commands. The least squares reconstructor

minimizes the mean sum square of distances between actual slope sensor measure-

ments and those which would result solely from a set of actuator commands (22:457).

A summary of this method is given in the Hysim3 documentation package (8:19).

The phase induced by the DM is subtracted from the phase screen generated by

a Gaussian random number generator to create the compensated waveform. This

wave front is used to compute the instantaneous OTF. Once the specified number

of frames have been calculated for averaging, Hysim3 creates the simulated image.

Sample Hysim3 output images are shown in Figure 14. These images are of

the DMSP satellite with a Y-axis rotation of 45 degrees and a Z-axis rotation of 30

degrees. Negative images are displayed for clarity. The quality of the images used in

this study is affected by the fact that this work was accomplished at an unclassified

level. Greater detail may be available at the classified level. Figure 24 shows three

images from the known image database that are typical of those used as input to

Hysim3.

Because the known image database consisted of 96 different satellite/pose com-

binations and the fact that the tests were run at twelve different lighting conditions,

the initial set of images to be tested had to be defined early in the process. Ide-

ally, all 96 original images would have been tested under each of the twelve lighting

conditions. However, it was deemed that this was not a practical approach due to

the time frame in which this study had to be conducted. The tests were conducted

using one view of each satellite with 30, 45, and 60 degree Y-axis rotations. The

Z-axis rotations selected were picked arbitrarily to serve as a valid representation of

possible cases. The poses selected are described in Table 5.

Test images were created for each of these eight satellite poses using the twelve

seeing conditions described in Table 6. Throughout the rest of this thesis, the target
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(a) (b)

(C) (d)

Figure 14. Sample Hysim3 Output Images for r., 0 and (a)M, 0 (b)M, 4
(c)M, = 8 (d)M, = 12

Satellite Y-axis Rotation (degrees) Z-axis Rotation (degrees)
CHUCKSAT 30 -150
CHUCKSAT 45 +0
CHUCKSAT 60 -120
DMSP 30 ±120
DMSP 45 -30
DMSP 60 +180
OCNR 30 -60
OCNR 45 ±90

Table 5. Satellite Orientations Used for the Matched Filter Tests
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My=O M,=4 M,=8 Mv=12
ro = 7cm a b c d
ro = 10cm e f g h
ro = 15cm i j k 1

Table 6. Definition of Seeing Conditions Considered in This Study

satellites are named by the first letter of their names, the Y-axis rotation angle, a
cc or an "n" to represent positive or negative, followed by the Z-axis rotation angle.

As an example, "c30n150" represents Chucksat with a 30 degree Y-axis rotation and

a negative 150 degree Z-axis rotation. The seeing conditions examined in this study

are referred to throughout this thesis by using the convention described by Table 6.

3.6 Test Procedures

The procedures followed for this research closely model the schematic shown

in Figure 1 in Section 2.1.1. For the initial tests, the matched filter was applied

to the original target images and their Sobel edge maps. These tests were then

reaccomplished after applying deconvolution to the target images. Finally, it became

apparent that the low SNR values associated with high visual magnitudes were

yielding poor results for target images associated with low light levels. Image post

processing techniques, including the use of the median filter, were examined in an

attempt to improve results at high visual magnitudes.

3.6.1 The Methodology for the Matched Filter Tests. The matched filter

approach to satellite pose estimation was tested using each of the test images defined

in Table 5. In a practical application of this research, the satellite type would be

known. As a result each test image was classified by satellite type (DMSP, OCNR,

or Chucksat) prior to the test.

The target image was energy normalized using the method defined by Equation

3 and the Fast Fourier Transform of the energy normalized test signal was calculated.

The FFT of the test image was sequentially point multiplied by the matched filter
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associated with an image in the known image database. The inverse Fourier trans-

form of this product was calculated and the maximum value within the resulting

matrix was established as the correlation value between the target image and the

known image. This was repeated for the full range of known images in the database.

The largest correlation value corresponded to the matched filter prediction of the

target's pose.

In order to establish a solid baseline for this research, the code was initially

tested using unaberrated images from the known image database as inputs to the

matched filter routine. These tests of the matched filter were performed with multiple

views of each of the three satellites studied. In every case, the code determined the

correct pose for the input image. This allowed the experimental test cases to be run

with a high degree of confidence that the code was working properly and had been

completely debugged.

3.6.2 Matched Filter Algorithms. The basic matched filter and four varia-

tions were examined in this study. Throughout this thesis, the matched filter algo-

rithms considered are named using the convention in Table 7. These are defined in

more detail in the following sections.

Case Number Description

1 Image Comparison, No Deconvolution
2 Sobel Edge Map, No Deconvolution

3 Image Comparison With Deconvolution

4 Sobel Edge Map, With Deconvolution
5 Median Filter, Edge Map, With Deconvolution

Table 7. Definition of Case Names

3.6.2.1 Case 1 and Case 2. The initial test cases, referred to as Case

1, were run using the aberrated test images, with no post processing techniques

applied, as the input to the matched filter code. The Case 2 tests were simply the

Case 1 tests repeated using the Sobel edge map of the target image. The target
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edge map was applied to the matched filter associated with the Sobel edge map of

the known image. Because of the degree of aberrations from atmospheric turbulence

in the imagery, Case 1 and Case 2 were considered to be the "worst case" basis

that would be used as a benchmark for variations on the matched filter approach.

Schematics of the algorithms applied for Case 1 and Case 2 are shown in Figures 15

and 16, respectively.

The results of the tests are discussed in depth in Chapter IV. However, it

should be noted here that turbulence induced blurring was determined to be the

main cause for error in both Case 1 and Case 2. The matched filter tests using the

Sobel edge map approach yielded a higher percentage of correct solutions to the pose

estimation problem. The results were highly dependent upon seeing conditions. At

lower light levels, the matched filter did not appear to be a viable tool for the pose

estimation problem.

3.6.2.2 Case 3 and Case 4. In an attempt to improve upon these

results, hybrid imaging techniques were applied to the target images before applying

the matched filter. The first efforts to improve the results of the matched filter tests

were based on the use of deconvolution.

Recon2 is a program provided by AFIT to deconvolve images from partially

compensated measurements. It is based on a technique described by Roggemann

(24:4232) which utilizes a reference image of a point source as seen under similar

conditions as the target image to remove some of the inherent blur. A summary of

this procedure is presented in Section 2.3.3.

Case 3 tests were the same as those performed in Case 1, except the AO imagery

was deconvolved before applying it to the matched filter algorithm. Similarly, Case

4 tests were identical to Case 2, with the exception that the image was deconvolved

before applying the Sobel operator. Schematics of the Case 3 and Case 4 algorithms

are presented in Figures 17 and 18, respectively.
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Figure 16. Schematic of Case 2
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Figure 19. Sobel Edge Map Demonstrating the False Edges Due to Deconvolution
at Low Light Levels; c30n150, r, 10cm, M, = 12, (a)Deconvolved
Image (b)Sobel Edge Map of Deconvolved Image

3.6.2.3 Case 5. The results of the matched filter tests using the

deconvolved images are discussed in detail in Chapter IV. The results are similar to

those achieved without deconvolution. The deconvolved images yielded a higher per-

centage of correct pose estimates, but similar problems were encountered for low light

levels. Again, the application of the Sobel edge map demonstrated a considerably

higher percentage of correct pose estimations.

A large portion of the errors encountered at low light levels using the Sobel

edge map algorithm were determined to be a result of the false edges demonstrated

in Figure 19. These were especially prominent within the Sobel edge maps of the

deconvolved images at low light levels. It was hypothesized that the pixels compris-

ing these false edges appear as parts of the target satellite to the matched filters

associated with the known image database. It became apparent that these effects

must be minimized in order to achieve more consistent results.

The median filter provides a method for reducing the apparent noise effects in

the target image. A 9 x 9 median filter was applied to the deconvolved images. This
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Figure 20. Result of Applying a Median Filter to a Deconvolved Image:
(a)Deconvolved Image (b)Deconvolved Image After Application of a 9x9
Median Filter

filter successfully removed a significant portion of the false edges while trading off

contrast within the image. Figure 20 shows the deconvolved view of c30n150 with

the application of the median filter as seen using r. = 15 cm and a visual magnitude,

M, = 12. A negative image is shown for clarity.

Because of the blurring within the image due to the median filter, only the

Sobel edge map approach to the matched filter test was pursued. The median filter

has a tendency to distort the edges of the image, especially at low light levels. This

results in minor changes in the scale size of the image when the Sobel edge map is

applied.

As discussed in Section 2.1.2.3, the matched filter is extremely sensitive to

scale size. In order to overcome this, the lines of the binary image resulting from

the Sobel edge map were thickened using the default procedure in the MATLAB

Image Processing Toolbox (26). This is analogous to Pratt's discussion of template
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Figure 21. Effects of Applying Line Thickening to the Sobel Edge Map of a Decon-
volved Image Which Has Been Passed Through a 9 x 9 Median Filter;
c60n150, ro = l0cm, M, = 12

matching techniques for image detection and registration (20:652). In the template

matching algorithm, a replica of a target is compared to all of the objects in an

image to determine its presence and location. The target template is edge thickened

to provide a trade off between localization accuracy and scale size. Figure 21 shows

the effects of this procedure on the Sobel edge map of the deconvolved image. A

negative image is shown for clarity.

The Case 5 tests were an extension of those performed in Case 4. After the

target image was deconvolved, a 9 x 9 median filter was applied to the image. The

Sobel operator was then applied. To overcome the effects of dilation by the median

filter, an edge thickening routine was used. At this point, the image was applied to

the matched filters associated with the Sobel edge maps of the images in the known

image database. A schematic of this algorithm is shown in Figure 22.
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3.7 Summary

This chapter has given a thorough explanation of the methods used to test the

application of the matched filter to the pose estimation problem. In the following

chapter, the results of this work are presented. These results are analyzed to both

determine the preferred method of applying the matched filter and draw conclusions

regarding the limitations of this approach.
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IV. Analysis of Results

To this point, the problem of satellite pose estimation has been summarized,

the pertinent theory has been discussed, and the methodology used to implement

the theory has been described. In this chapter, the results of the study are presented

and analyzed.

4.1 Analysis of the Matched Filter Algorithms Examined in This Thesis

The most basic possible analysis of the results discussed above is to simply

consider the number of correct pose estimations for each of the matched filter ap-

proaches that were examined. This was accomplished for the 96 satellite/seeing

condition combinations in the test image database for each of the five matched filter

algorithms. The results are summarized in Table 8. Complete tables of the results

Number of Correct Percentage of Correct
Matched Filter Approach Pose Estimations Pose Estimations
Case 1 22 22.9 %
Case 2 47 49.0%
Case 3 21 21.9 %
Case 4 70 72.9 %
Case 5 50 52.1%

Table 8. Correct Pose Estimations for Each of the Matched Filter Algorithms

of these tests for all seeing conditions and filter algorithms considered are included

in Appendix A. These tables show the pose that was determined by the matched

filter under all 12 seeing conditions for each input. Separate tables are included for

each matched filter algorithm.

The results in Table 8 appear to verify the hypothesis that the Sobel edge map

techniques are superior to the basic matched filter for the pose estimation problem.

However, it is also important to consider the correlation between the actual pose

and the predicted pose for the cases where the matched filter yields an incorrect
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estimation. To do this, it is necessary to develop a means of quantifying the incorrect

outputs from the matched filter.

A common method used for the comparison of two images is the determination

of a correlation value. According to Pratt(20:685), this is an especially useful tool

if it is mathematically reproducible and corresponds well with visual image quality

tests. Using a sum-square error approach, a matrix of spatial correlation values

between each of the images in the known image database was developed. For each

pair of images in the database, a normalized correlation value was calculated using

Kij .-_ Z- _ l 1 =l(Imagei ..... x Imagej j. , 2  (36)
4/256, Y256 •2 X--E256 E-256 'j~n

M= Z= 1 Image =x × =, Z .=Image,

where Imagei and Imagej represent the 256 x 256 arrays of grayscale values defining

the two images. K,j represents the spatial correlation between the two input images.

!jj is normalized so that a maximum value of unity is returned. This occurs only

when Imagei and Imagej are identical. When the two input images are different,

the correlation value lies in the range from 0 to 1, with strong correlations being

represented by higher values.

For each test case examined, the correlation value between the known image

database models of the actual pose and the predicted pose was calculated. These

values were calculated using the images contained in the known image database since

these are pure images with no atmospheric turbulence, diffraction, or photon noise

effects. Complete tables of these correlation values can be found in Appendix B.

Figure 23 is a cumulative probability distribution of the correlation values for each

of the matched filter approaches examined in this thesis. Two key conclusions can

be drawn from the cumulative probability distribution. First, the relative benefits of

utilizing the Sobel edge map before applying the matched filter are clearly evident

since Case 2 and Case 4 both have low occurence rates of low correlation values.

Secondly, for the edge map cases, the correlation values associated with wrong pose
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Calculated Images Input Images
C C C

3 c 3 4 c c

0 c 3 0 c 5 6 c 6
n 3 0 p 4 p 0 6 0
1 0 p 1 5 1 n 0 p
5 p 3 5 p 8 6 p 6
0 0 0 0 0 0 0 0 0

c30n150 7 0 0 0 0 0 0 0 0

c30pO 1 0 0 0 0 0 0 0 0

c30p30 2 0 0 0 0 0 0 0 0

c30p150 2 0 0 0 0 0 0 0 0

c45p0 0 0 0 0 9 0 0 0 0
c45p180 0 0 0 0 3 0 0 0 0

c60n60 0 0 0 0 0 0 0 0 1

c60pO 0 0 0 0 0 0 0 0 3
c60p60 0 0 0 0 0 0 0 0 8

Table 9. Confusion Matrix for Chucksat Using the Case 4 Algorithm

estimations are much higher. It should also be noted that the distributions were

identical for Case 1 and Case 3.

Appendix C contains the confusion matrices for each of the three satellites

studied with each of the matched filter algorithms. Table 9 is representative of

these and demonstrates the confusion between 180 degree rotations about the axis

of symmetry. The confusion matrix is structured in a manner such that the actual

pose of the target is listed at the top of the table and the matched filter outputs

are listed down the left side. The numbers in the matrix represent the number of

occurrences of each input/output pair. Values along the diagonal are representative

of successful pose estimations. Of particular interest in this confusion matrix are

the outputs associated with c30n150 and c45p0. The output c30p30 is a 180 degree

rotation about an axis of symmetry. The same is true for the output value of c45p180

for the input target of c45p0.
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Matched Filter
Algorithm 1.00 > 0.90 > 0.80
Case 1 22.9 % 37.5 % 50.0 %
Case 2 49.0 % 56.3 % 60.4 %
Case 3 21.9 % 37.5 % 50.0 %
Case 4 72.9 % 78.1 % 80.2 %
Case 5 52.1 % 70.8 % 79.2 %

Table 10. Occurrence Rates of Correlation Values

While these must be categorized as incorrect pose estimations, it should be

noted that these errors were often between poses with stronger than a 90 % correla-

tion. The occurrence rates of correlation values are summarized in Table 10. Again,

it appears that the matched filter algorithm using the Sobel edge map of the decon-

volved image provides the best results. The median filter approach to this method

shows a dramatic drop in perfect correlations but shows similar results for correla-

tion values above 0.8 and 0.9. The confusion matrices found in Appendix C again

show a relatively high rate of 180 degree errors about the axis of symmetry. This ac-

counts for the large number of wrong predictions with correlation values above 0.90.

Figure 24 provides sample images from the known image database for each of the

three satellites studied. From these, it is apparent that there is an approximation to

symmetry for a 180 degree rotation about the body Z-axes for Chucksat and DMSP.

The same is true for 90 degree rotations about the body Z-axis for OCNR.

The acceptance of symmetry errors as correct pose estimations is highly de-

pendent upon the satellite being imaged and the application for which the imagery

will be used. Figures 25 through 29 indicate the performance of each of the matched

filter algorithms under all twelve seeing conditions, both with and without symmetry

errors considered as correct pose estimations.
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Figure 27. Performance of Matched Filter Algorithms by Seeing Condition, With
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Figure 28. Performance of Matched Filter Algorithms by Seeing Condition, With

and Without Symmetry Errors Allowed: Case 4
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4.2 Limitations of the Matched Filter for the Satellite Pose Estimation Problem

The analysis above provides excellent insight into the relative effectiveness of

the different approaches taken to the utilization of the matched filter for the pose

estimation problem. However, it neglects to consider the effects of atmospheric

turbulence levels and lighting conditions. This information is essential for the deter-

mination of the limits of the matched filter for this problem.

To determine the limitations of the matched filter techniques, it is essential

to consider the results at each level of atmospheric turbulence and each light level

that is considered in this study. In practice, a wide variety of lighting conditions

and atmospheric turbulence levels can exist in numerous combinations. This study

considers several discrete combinations that are considered to be representative of

those encountered when imaging LEO satellites from ground based observatories.

4.2.1 Dependency on r,. The value of Fried's parameter, r,, plays a sig-

nificant role in the signal to noise ratio associated with an image. This dependency

is demonstrated in Figure 30. Figure 30 represents the radially averaged SNR asso-

ciated with a point source imaged with the 1.0 meter telescope described in Section

3.3. These plots are for a simulated point source with M, = 0 and ro values of 7, 10,

and 15 cm. An OTF radius of 40 pixels is represented. This figure demonstrates the

expected results. As ro, the equivalent diameter of a diffraction limited telescope,

increases there is a significant rise in the signal to noise ratio extending into the

higher spatial frequencies. The higher SNR near the OTF cutoff frequency results in

a decreased amount of blur in the image. Additionally, the MTF cutoff frequency, as

defined in Figure 9, increases. This tends to minimize the loss of edge information

during the deconvolution process, again resulting in a sharper image.

The results of this study were categorized by the r. value for each algorithm to

determine the effect on the overall performance of the matched filter when applied to

the pose estimation problem. The average percentage of correct pose estimations as
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a function of r, for each matched filter algorithm is plotted in Figures 31 through 35.

Data points with error bars are shown to demonstrate the deviation from the mean

with visual magnitude. Separate plots for each algorithm are provided for clarity.

It is apparent that the algorithms which utilize the Sobel edge map, in most

instances, provide a higher likelihood of correct pose estimation. Based on the plots

for Cases 1 and 3, the performance for the image to image correlation routines is not

greatly affected by the visual magnitude of the target. However, significant decreases

in performance with increasing visual magnitude are evident in the plots for Cases

2 and 4. The wide ranges of data points for the Sobel algorithms indicates that

their performance may be more highly dependent upon visual magnitude than on

atmospheric turbulence. The error bars in the plot for Case 5 are much narrower

than for the other Sobel approaches. The median filter in Case 5 masks some of the

noise effects in the target image. Since SNR has been shown to be proportional to the

square root of the photon count incident on the collecting device, these observations

seem to lend additional support the hypothesis that the Sobel algorithms are highly

dependent upon the visual magnitude of the target. The range of data points in

these plots is too diverse to make any definitive statements regarding the effect of r,

on the pose estimation algorithms.

4.2.2 Dependency on Visual Magnitude. As defined by Equation 24 in

Chapter II, the visual magnitude of the target is an important contributor to the

signal to noise ratio. Figure 36 shows the variation observed at r, = 15 cm of SNR as

a function of M, for a point source measured with a 1.0 meter telescope. The OTF

radius is 40 pixels. This figure demonstrates an important contributing factor to the

decreased performance of the matched filter in the pose estimation algorithm at low

photon flux levels. At the lower visual magnitudes, there is a minimal difference in

the SNR. However, the signal to noise ratio is dramatically degraded at M, = 12.

This decreased SNR causes the higher spatial frequency information to be buried

in the received image. The width of the MTF filter is decreased, resulting in a
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permanent loss of this information during deconvolution. Visual magnitude is

shown to be the key factor in determining the utility of the matched filter for satellite

pose estimation. This is best captured in Figures 37 through 41, which show the

average occurrence of correct outputs from the matched filter as a function of visual

magnitude for each algorithm considered.

It is apparent that visual magnitude is an extremely strong contributor to the

effectiveness of the matched filter. The error bars show a trend of slightly improved

performance for higher values of r,. All of the algorithms examined show a dramatic

decrease in performance with a decrease in photon flux. As with r,, the application

of the Sobel edge map to the deconvolved image shows the best overall results. It

is important to note that the application of the median filter provides a margin of

improvement at a visual magnitude of 12. The median filter method resulted in a

33.3 percent rate of correct pose estimations compared to the 20.8 percent rate for

the Sobel/Deconvolution approach at this light level.

4.3 Weighted Utilities of the Matched Filter Algorithms

The effects of atmospheric turbulence and light levels on the effectiveness of the

matched filter for pose estimation are clearly defined by the previous two sections.

This section describes the relative occurrence rates of the visual magnitude and

turbulence level combinations considered in this study. Additionally, it describes a

method for quantifying the utility of each matched filter algorithm. By combining

this information, the weighted utilities associated with each of the five matched filter

algorithms are described.

4.3.1 Combined Occurrence Rates for r, and M,. To perform a more realis-

tic determination of the utility of the matched filter for the pose estimation problem,

the relative occurrence rates of these events must be considered when assessing the

relative effectiveness of the algorithms studied. To accomplish this, historical data
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9.79 1.41
M, 5.37 0.94

Table 11. Parameters Defining the Logistic Probability Distribution for ro and M,

was obtained from the Air Force Maui Optical Station (AMOS) regarding both the

turbulence levels and visual magnitudes that are encountered when imaging LEO

satellites (2). This historical data yielded a probability distribution for both turbu-

lence and light levels. Histograms of this data are shown in Figures 12 and 13 in

Section 3.4 of this report.

Using this data, probability distributions for both M, and r, were established.

These results are based on the output of the Best Fit statistical analysis software

package using a Chi-squared test for fit. Both M, and r, were found to be suffi-

ciently modeled with the Logistic probability distribution. The Logistic distribution

is defined mathematically by Equation 37 (17:289)

Plogistic(x,) = s(1 + e(Z-)/s) 2 '  (37)

where I and s are the mean of the data and a scaling parameter, respectively. The

data from Maui was fit to Logistic probability distributions defined by Table 11.

Figure 42 is a graphical representation to the probability distributions for r, and M,

as defined by Equation 37 and Table 11.

From this information, the probability associated with each of the twelve com-

binations of M, and r. values can be established (18:51). For two independent events,

A and B, the probability of their intersection is given by Equation 38.

P(A n B) = P(A) . P(B) (38)

Based on Equation 38, it is possible to generate the probabilities for each possible

combination of r, and M, from the independent distributions defined in Equation 37.
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Figure 42. Probability Distributions for r. and M,

M,=0 M,=4 M,=8 M,=12
r, = 7cm 0.000228 0.012388 0.004408 0.000076

r. = 10cm 0.000528 0.028688 0.010208 0.000176
r, = 15cm 0.000051 0.002771 0.000986 0.000017

Table 12. Probabilities of ro,M, Combinations Considered in this Thesis

These probabilities are depicted in Figure 43. The probability associated with each

seeing condition considered in this thesis, using the Logistic probability distributions

for r. and M,, is given in Table 12.

Based on the probabilities in Table 12, it is possible to determine a relative

occurrence rate for each seeing condition considered in this study. These relative

occurrence rates are linearly proportional to the probability associated with each

seeing condition and are defined in a manner such that they sum to unity. The sum

of the probabilities in Table 12 is calculated. Each probability in Table 12 is divided

by this sum to yield the relative occurrence rates given in Table 13. Note that the

values given in this table are rounded.
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Figure 43. Probabilities of Combinations of r, and M,

M,=0 M,=4 M,=8 M,=12

ro = 7cm 0.004 0.205 0.073 0.001
ro = 10cm 0.009 0.474 0.169 0.003
ro = 15cm 0.001 0.046 0.015 0.000

Table 13. Relative Occurrence Rates of Seeing Conditions Considered in this Thesis
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4.3.2 Determination of Weighted Utilities. Using the information pre-

sented above, it is possible to define weighted utilities for each matched filter algo-

rithm considered. In this study, utilities related to the percentage of correct pose

estimations and the average correlation between actual and predicted poses for each

matched filter algorithm are considered. The weighted utility value is a quantitative

means for examining the relative performance of each of the matched filter algo-

rithms. Because it is based on the actual seeing conditions encountered in space

surveillance operations at AMOS, it provides an indication of the relative likelihood

of correct pose estimations that are possible with each algorithm.

4.3.2.1 Weighted Utility for the Percentage of Correct Pose Estima-

tions. For each algorithm, the percentage of correct pose estimations for each

ro,M, combination defined in Table 6 was calculated. This information is depicted

in Figures 25 through 29. The percentage of correct pose estimations for each com-

bination, a through 1, was multiplied by the corresponding relative occurrence rate

from Table 13. This was accomplished for each algorithm, both with and with-

out symmetry errors included as correct pose estimations. For each algorithm, the

weighted percentage utility value is the sum of these products. This is described

mathematically by

U - RaCa + RbCb --... + RIC,, (39)

where U represents the weighted utility value, R represents the relative occurrence

rate associated with each seeing condition, and C represents the percentage of correct

pose estimations under the appropriate seeing condition. The weighted percentage

utility values are summarized in Figure 44.

4.3.2.2 Weighted Correlation Utilities. In a similar manner, a weighted

average correlation utility value was calculated. The weighted average correlation

utility provides a relative measure of the expected strength of correlation between

the actual and predicted pose. A high numeric value indicates that errors in pose
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estimation will likely be between two poses that have very similar appearances, such

as rotations about an axis of symmetry.

For each matched filter algorithm, the mean correlation values from Appendix

B for each seeing condition were multiplied by the appropriate relative occurrence

rate from Table 13. The sum of these products for each algorithm is the weighted

correlation utility value. Mathematically, this is described by Equation 39 with C

representing the mean correlation value associated with each seeing condition. The

results are given in Figure 45.

4.3.2.3 Results of the Weighted Utility Analysis. The weighted utility

functions are not intended to precisely describe the percentage of correct pose esti-
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mations that are possible with a given algorithm. This could only be accomplished

in the laboratory using techniques such as Monte Carlo simulation. Because of the

time involved in creating a large database of aberrated images under the necessary

seeing conditions, this approach is not feasible in the time frame allotted for this

thesis effort. Instead, the approach used in this stridy demonstrates the relative

effectiveness of each algorithm under actual operational conditions. These weighted

utilities, however, will provide a first order approximation to the percentages of cor-

rect pose estimations that might be expected when using a Monte Carlo simulation.

The results indicate that the application of the Sobel edge map to a deconvolved im-

age before applying the matched filter will yield the most accurate pose estimations

under normal operating conditions.

4.4 Summary

This chapter has presented the results of the matched filter algorithms con-

sidered in this study. It has shown the overall accuracy of each algorithm under a

variety of seeing conditions. Additionally, an analysis of the effects of atmospheric

turbulence levels and target visual magnitudes has been presented. The results of

this analysis were then used in combination with historical data from the Air Force

Maui Optical Station to develop a weighted likelihood of correct pose estimation for

each algorithm considered. The following chapter utilizes this information to draw

conclusions regarding the utility of the use of the matched filter to the satellite pose

estimation problem.
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V. Conclusion and Recommendations for Future Research

The main objective of this research effort was to examine the limitations on

the use of the matched filter for the satellite pose estimation problem. This objective

was motivated by the need to establish a solid foundation for future research in this

field. In doing this, it has been possible to examine several derivatives of the basic

matched filter algorithm.

Chapter I of this thesis described the problem, presented the current level of

knowledge in this arena, defined the scope of this effort, and outlined the approach

that was taken. In Chapter II, the relevant theory from the fields of pattern recog-

nition and imaging through turbulence were presented. The methodology applied in

this research effort was outlined in Chapter III. Performance results for each matched

filter algorithm were presented in detail in Chapter IV. In this chapter, the key ac-

complishments of this effort are highlighted and conclusions are drawn from this

work. Perhaps even more importantly, recommendations for future research in this

area are offered.

5.1 Summary of Research Advancements

This thesis represents the first major effort to quantify the utility of a pose

estimation algorithm as a function of atmospheric turbulence levels and target visual

magnitude. Other approaches, such as neural networks, are presently being studied

as a solution to the pose estimation problem. The research presented in this thesis has

defined a benchmark to which future research efforts can be compared. Borrowing

from the concept "appearance matching" proposed by Murase and Nayer (19:6), this

thesis has attempted to include all of the significant variables in the study of satellite

pose estimation, rather than focusing solely on geometric correlations.

Additionally, this work has evaluated five different matched filter algorithms

under the same range of seeing condition variables. A weighted utility function was
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developed to measure the relative performance of each matched filter algorithm. This

function accounts for the actual seeing conditions encountered at AMOS. In doing

so, this thesis has been able to define an algorithm with a high probability of correct

pose estimation under actual operational conditions.

5.2 Summary of Results Obtained

Satellite pose estimation experiments were conducted under a wide range of

seeing conditions, utilizing five different matched filter algorithms. The key results

obtained are summarized below:

" Visual magnitude is the single most important aspect of seeing conditions when

estimating the pose of a LEO satellite. Above visual magnitudes of approxi-

mately 8, the accuracy of the pose estimation routine diminishes significantly.

" When utilizing partially compensated adaptive optics, the effects from atmo-

spheric turbulence on the pose estimation routines considered are minimal. r.

was shown to contribute to the pose estimation problem. Slightly better per-

formance is achieved with increases in r,. The pose estimation routine defined

in this thesis is more highly dependent upon visual magnitude.

" For imagery of objects at extremely low light levels, the application of standard

image processing techniques such as the median filter before the application

of the matched filter can yield some improvement in the results. Significant

improvements were noted in this study when the median filter was applied to

imagery with M, = 12.

" The use of hybrid imaging techniques such as deconvolution is an essential part

of the pose estimation algorithm.

• A significant portion of the erroneous pose estimations encountered were due

to symmetry in the target. In general, these errors are more common with

increasing visual magnitudes. This indicates that a solution to this problem
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may arise as methods are developed to further improve the signal to noise ratio

in the target image.

5.3 Conclusions Drawn from Research

Satellite imagery collected by operational facilities is obtained under a wide

range of seeing conditions. The utility of a pose estimation algorithm must be

weighted to include the entire range of conditions that can realistically be experi-

enced. A high degree of confidence can be achieved for a matched filter algorithm

applied to the pose estimation problem. Using deconvolution of partially compen-

sated imagery techniques, a high utility can be achieved when a Sobel edge map of

the deconvolved target image is used as the input to the matched filter.

5.4 Recommendations for Future Research

This thesis effort focused on developing an algorithm to determine the pose of

a LEO satellite consistently under a wide range of seeing conditions. No attempt was

made to determine the degree of precision in pose estimation that can be attained

by the matched filter algorithm. Other research efforts, such as that presented by

Chang and Hoepner (6:18), indicate accuracies within one degree of error in pose

estimation. Other pose estimation techniques in the literature fail to account for

variables such as visual magnitude. Future research should consider the precision

that can be attained as a function of seeing conditions for the matched filter and

other pose estimation routines.

Significant decreases in performance at high visual magnitudes are likely due to

the low signal to noise ratio in the target images. Using deconvolution on images with

low values of SNR results in a significant loss of high spatial frequency information,

resulting in blurred imagery. This introduces a probability of error when using the

Sobel edge map of the target image to approximate the Sobel edge map of an image

in the known image database.
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Some relief from this difficulty may be obtained by applying more sophisticated

edge detection techniques, such as those discussed in Section 2.1.2.1 by Law (14)

and Qian (12). Future efforts should focus on improving the SNR in the target

image. This will yield sharper images, thus providing more accurate edge maps.

Improvements in SNR should reduce the number of errors due to satellite symmetry.

As with any database search routine, the matched filter technique for satel-

lite pose estimation is computationally expensive. Gavrila (10:1) has examined a

method of speeding up correlation algorithms that utilize databases of edge map

images. His research focuses on phase coded filtering techniques which combine

multiple patterns in one filter by assigning complex weights of unit magnitude to

the individual patterns and summing them in a composite filter. This approach first

applies an inexpensive matching technique to determine a likely subset of the known

image database that will likely contain the target image. More intensive correlation

methods are applied to this subset of the known database. Phase coded matching is

subject to many of the same limitations as correlation based techniques, but is much

faster. It is shown to be an effective method of reducing the known image database

to a size that can be handled by the more common correlation algorithms.

5.5 Summary

Based on the results obtained in this research effort, it is apparent that the

matched filter is a viable method for determining the pose of a LEO satellite. The

information contained in this thesis clearly outlines the limitations imposed on its

effectiveness by the range of seeing conditions that are encountered in an actual

operational environment. Further research must be done to define the degree of

precision in pose estimation that can be achieved under actual seeing conditions.

Improved results can be expected as methods are developed to improve the signal

to noise ratio in satellite surveillance imagery. Additionally, efforts should be made

to examine ways to speed up the correlation algorithm.
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By defining a pose estimation algorithm with proven effectiveness over the

range of seeing conditions that are normally encountered in ground based space

surveillance operations, this study has made a significant contribution to the field and

has successfully provided the framework from which future research can originate.

In doing so, the objectives of this research effort have been achieved.
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Appendix A.

For each satellite, the name of the satellite in the table represents the pose that

was predicted by the matched filter. A * indicates that the matched filter correctly

identified the pose of the target. Within this appendix, each matched filter algorithm

is referred to by a case number. These case numbers are defined in Table 7.
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=.07 r=.10 r=.15
Mv =0 **

Mv =4 * *

Mv =8 ***

Mv =12 ***

Table 14. Case 1 Results, Input c30n150

r,_ _ r= .07 r,=.10 r, =.15
Mv =0 c45p180 c45p180 c45p180
Mv =4 c45p180 c45p180 c45p180
Mv =8 c45p180 c45p180 c45p180
Mv =12 -c45p180 -c45p180 Ic45p180

Table 15. Case 1 Results, Input c45p0

r, .07 r, .10 r, .15
Mv =0 ***

Mv =4 ***

Mv =8 * c60p120
Mv =12 c60p120 O

Table 16. Case 1 Results, Input c60p60

___ _ r= .07 r 0 = .10 r, =.15
Mv = 0 -d30p90 d30p90 d30p90
Mv = 4 -d30p90 d30p90 d30p90
Mv =8 -d30p90 d30p90 d30p90
Mv = 12 d30p9O d30p9O d30p90

Table 17. Case 1 Results, Input d30p120

_____ -r= .07 r 0 = .10 r, = .15
Mv = 0 -d45p90 d45p90 d45p90
Mv = 4 d45p90 d45p90 d45p90
Mv = 8 -d45p90 d45p90 d45p90
Mv = 12 1 d45p90 d45p90 d45p90

Table 18. Case 1 Results, Input d45n30
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__r.__ r= .07 r. = .10 r, = .15
Mv =0 d60p90 d60p90 d60p90
Mv = 4 d60p90 d60p90 d60p90
Mv = 8 d60p90 d60p90 d60p90
Mv = 12 d60p90 d60p90 d60p90

Table 19. Case 1 Results, Input d60p180

To___ r= .07 r.0 = .10 r,, = .15

Mv = 0 -o45n60 o45n60 o45n60
Mv = 4 -o45n60 o45n60 o45n60

Mv = 8 -o45n60 o45n60 o45n60
Mv = 12 -o45n60 o45n60 o45n60

Table 20. Case 1 Results, Input o30n60

r,,__ -r= .07 r,,= .10 r,,= .15
Mv = 0 o45n90 o45n90 o45n90
Mv = 4 -o45n90 o45n90 o45n90

Mv = 8 -o45n90 o45n90 o45n90

Mv = 12 -o45n90 o45n90 o45n90

Table 21. Case 1 Results, Input o45p90
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_____ =0 .07 r = .10 ro=.15
Mv = 0 c30p30 c30n30
Mv =4 c30p30 c30p150 O

Mv =8 c30p15O
Mv =12 c3OpO c30p0 c30p0

Table 22. Case 2 Results, Input c30n150

______r 0 = .07 ro = .10 r,~ .15
Mv = 0 c30n30
Mv =4 * - * -

Mv = 8 c45n150 c45n150 c45n150
Mv = 12 c30p0 c3OpO -c3OpO

Table 23. Case 2 Results, Input c45p0

ro .07 r0 = .10 r0 = .15
Mv = 0 * *

Mv = 4 c60n60 O c60n60
Mv =8 c60n150 c60p150 c60n30

Mv = 12 c45p180 -c45n150 c60n150

Table 24. Case 2 Results, Input c60p60

_____ r .07 r,,=.10 r,, .15
Mv = 0 **

Mv =4 ***

Mv = 8 * -

Mv = 12 1 d30n120 1 d30n60 1 d30n120

Table 25. Case 2 Results, Input d30p120

_____ r .07 ro=.10 ro=.15
Mv =0 * **

Mv =4 * **

Mv = 8 d45n60 d45n60 d45n60
Mv = 12 -d45n60 d45n60 d45n60

Table 26. Case 2 Results, Input d45n30
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___ r,_ r= .0 7 r0 .10 r .15
Mv = 0

Mv =4 ***

Mv = 8 d45p120 d30p120
Mv = 12 d30p120 d30p120 d30p120

Table 27. Case 2 Results, Input d60p180

r= .07 r,= .10 r,= .15
Mv = 0

Mv =4 * **

Mv = 8 o45n60 o45n150
Mv =12 4n10-o45n60 i o45n60

Table 28. Case 2 Results, Input o30n60

r. .07 r,= .10 r,, .15
Mv = 0 **

Mv =4 o45n90
Mv = 8 o45n150 o45n150 o45n90
Mv = 12 o45n150 o45n150 o45n1501

Table 29. Case 2 Results, Input o45p90
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_____ r. r= .07 r=.10 r0 =.15

Mv = 0

Mv =4 * **

Mv = 8 * *

IMv =121 * -

Table 30. Case 3 Results, Input c30n150

___ _ r= .07 r = .10 ro =.15
Mv =0 c45p180 -c45p180 -c45p180

Mv = 4 c45p180 -c45p180 -c45p180

Mv = 8 c45p180 -c45p180 -c45p180

Mv = 12 1 c45p180 -c45p180 -c45p180

Table 31. Case 3 Results, Input c45p0

_____r 0 = .07 r,= .10 r,= .15
Mv = 0 * *

Mv =4 * **

Mv = 8 * *

Mv = 12 -c60p120 1 c60p120 c60p120

Table 32. Case 3 Results, Input c60p60

r.___ r= .07 ro = .10 r0,= .15
Mv = 0 -d30p90 d30p90 d30p90
Mv = 4 -d30p90 d30p90 d30p90
Mv 8 d30p90 d30p90 d30p90
Mv = 12 -d30p90 d30p90 d30p90

Table 33. Case 3 Results, Input d30p120

__._ r= .07 r,,= .10 r, =.15
Mv = 0 d45p90 d45p90 d45p90
Mv = 4 d45p90 d45p90 d45p90
Mv =8 -d45p90 d45p90 d45p90
Mv = 12 1d45p90 d45p90 I d459j

Table 34. Case 3 Results, Input d45n30
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______ r= .07 r, = .10 r,0 = .15
Mv =0 d60p90 d60p90 d60p90
Mv = 4 d60p90 d60p90 d60p90
Mv = 8 d60p90 d60p90 d60p90
Mv = 12 .d60p90 d60p90 d60p90

Table 35. Case 3 Results, Input d60p180

___ _ r= .07 r, =.10 r = .15
Mv = 0 o45n60 o45n60 o45n60
Mv = 4 o45n60 o45n60 o45n60
Mv =8 o45n60 o45n60 o45n60
Mv = 12 o45n60 o45n60 o45n60

Table 36. Case 3 Results, Input o30n60

____ r= .07 r,,= .10 ro = .15
Mv = 0 o45n90 o45n90 o45n90
Mv = 4 o45n90 o45n90 o45n90
Mv =8 o45n90 o45n90 o45n90

Mv=12 o45n90 o45n90 o45n90

Table 37. Case 3 Results, Input o45p90
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ro=.07 ro=.1O ro=.15
Mv=O * * *
Mv = 4 * c30p150 c30p30

Mv = 8 * c30p30 *

Mv = 12 c30p150 c30p0 *

Table 38. Case 4 Results, Input c30n150

ro=.07 ro=.10 ro=.15
Mv=O * * *

Mv=4 * * *

Mv = 8 c45p180 * *

Mv = 12 c45p180 c45p180 *

Table 39. Case 4 Results, Input c45p0

ro=.07 ro=.10 ro=.15
Mv=0 * * *

Mv-4 * * *

Mv = 8 * c60n60 *

Mv = 12 c60pO c60p0 c60pO

Table 40. Case 4 Results, Input c60p60

ro= .07 ro .10 ro=.15
Mv=O * * *

Mv=4 * * *

Mv=8 * * *

Mv = 12 * * *

Table 41. Case 4 Results, Input d30p120

ro=.07 ro .10 ro=.15
Mv=O * * *

Mv=4 * * *

Mv=8 * d45n60 *

Mv = 12 d45n60 d45n60 d45n60

Table 42. Case 4 Results, Input d45n30
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____ r, r= .07 r0 .10 r0 .15
Mv = 0

Mv =4 * * *

Mv = 8 * *

Mv = 12 d45p120 d45p120 d45p120

Table 43. Case 4 Results, Input d60p180

_____r, .07 r.= .10 r.= .15
Mv = 0

Mv =4 * * *

Mv =8 * o30n150
Mv = 12 o45n150 o45n60 o45n60

Table 44. Case 4 Results, Input o30n60

_____ro .07 r0 = .10 r0 = .15
Mv = 0 **

Mv =4 * * *

Mv =8 o45n90
Mv = 12 o45n150 o45n90 o45pl5O

Table 45. Case 4 Results, Input o4 5 p90
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rV, =r.07 r, =.1O ro=.15
Mv = 0 c30p30 c30p30 c30p30
Mv = 4 c30p150 c30p30 c30p30
Mv = 8 * c30p30 c30p30

Mv = 12 * * c30p150

Table 46. Case 5 Results, Input c30n150

ro= .07 ro= .10 r= .15
Mv=0 * * *

Mv=4 * * *

Mv = 8 c45p180 * c45p180

Mv = 12 * c45n150 c45p180

Table 47. Case 5 Results, Input c45p0

r.=.07 r= .10 r.=.15
Mv = 0 c60n60 * *

Mv = 4 c60n60 * c60n60
Mv = 8 c60n60 c60n60 *

Mv = 12 c60p150 c60p150 c60n120

Table 48. Case 5 Results, Input c60p60

r.=.07 r= .10 ro=.15
Mv=O * * *
Mv=4 * * *
Mv=8 * * *
Mv = 12 * * *

Table 49. Case 5 Results, Input d30p120

ro=.07 ro=.10 ro=.15
Mv=O * * *
Mv=4 * * *

Mv = 8 * d45n60 *

Mv = 12 d45n60 d45n60 d45n60

Table 50. Case 5 Results, Input d45n30
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ro .07 r0 = .10 'r,, .15
Mv = 0 **

Mv =4 ***

Mv = 8 **

Mv = 12 d45p120 d30p120 d45p120

Table 51. Case 5 Results, Input d60p180

ro .07 r, = .10 ro = .15
Mv =0 * o45n150 o45n150
Mv = 4 o45n150 o45n150 o45n150
Mv = 8 o45n150 o45n150 o45n150

Mv =12 o45n150 o45n60 o45n150

Table 52. Case 5 Results, Input o30n60

___ _ r= .07 r,=.10 r = .15
Mv = 0 o45n90 o45n90
Mv =4 - * o45n90

Mv = 8 o45n90 o45n90 o45n90
Mv = 12 o45n150 o45n90 o45n90

Table 53. Case 5 Results, Input o45p90
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Appendix B.

This appendix contains the correlation values between the actual input images

and the pose estimation that resulted from the use of each of the matched filter

algorithms. The r, and M, combinations are defined in Table 6.

a b c d e f g h i j k 1
c30nI5O 1 1 1 1 1 1 1 1 1 1 1 1
c45p0 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893
c60p60 1 1 1 0.9867 1 1 0.9867 1 1 1 1 1
d30p120 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427
d45n30 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593
d60p180 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181
o30n60 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757
o45p90 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553
MEAN 0.7176 0.7176 0.7176 0.7159 0.7176 0.7176 0.7159 0.7176 0.7176 0.7176 0.71755 0.7176

Table 54. Case 1 Correlation Values

a b c d e f g h i j k 1
c30n150 0.9878 0.9878 0.9558 0.7796 0.9660 0.9558 1 0.7796 1 1 1 0.7796
c45p0 1 1 0.7615 0.7098 0.6466 1 0.7615 0.7098 1 1 0.7615 0.7098
c60p60 1 0.9841 0.7561 0.5113 1 1 0.7552 0.5261 1 0.9841 0.7693 0.7561
d30p120 1 1 1 0.8539 1 1 1 0.3109 1 1 1 0.8539
d45n30 1 1 0.6700 0.6700 1 1 0.6700 0.6700 1 1 0.6700 0.6700
d60p180 1 1 0.2506 0.2077 1 1 0.2077 0.2077 1 1 1 0.2077
o30n60 1 1 0.6757 0.5920 1 1 1 0.6757 1 1 0.5920 0.6757
o45p9O 1 0.8553 0.3051 0.3051 1 1 0.3051 0.3051 1 1 0.8553 0.3051
MEAN 0.9985 0.9784 0.6719 0.5787 0.9516 0.9945 0.7123 0.5231 1 0.9980 0.8310 0.6197

Table 55. Case 2 Correlation Values
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a b c d e f g h i j k 1
c30n150 1 1 1 1 1 1 1 1 1 1 1 1
c45p0 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893 0.9893
c60p60 1 1 1 0.9867 1 1 0.9867 1 1 1 1 0.9867
d30p120 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427 0.5427
d45n30 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593 0.3593
d60p180 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181 0.3181
o30n60 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757 0.6757
o45p90 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553 0.8553
MEAN 0.7176 0.7176 0.7176 0.7159 0.7176 0.7176 0.7176 0.7159 0.7176 0.7176 0.7176 0.7159

Table 56. Case 3 Correlation Values

ab c d ef g h i j k 1
c30n150 1 1 1 0.7702 1 1 0.9878 0.7796 1 0.9878 1 1
c45pO 1 1 0.9893 0.9893 1 1 1 0.9893 1 1 1 1
c60p60 1 1 1 0.5977 1 1 0.7693 0.5977 1 1 1 0.5977
d30p120 1 1 1 1 1 1 1 1 1 1 1 1
d45n30 1 1 1 0.6700 1 1 0.6700 0.6700 1 1 1 0.6700
d60p180 1 1 1 0.2506 1 1 1 0.2077 1 1 1 0.2506
o30n60 1 1 1 0.5920 1 1 0.7911 0.6757 1 1 1 0.6757
o45p9O 1 1 0.8553 0.3051 1 1 1 0.8553 1 1 1 0.3043
MEAN 1 1 0.9806 0.6469 1 1 0.9023 0.7219 1 0.9985 1 0.6873

Table 57. Case 4 Correlation Values

a b c d e f g h i j k 1
c30n15O 0.9878 0.9878 1 1 0.9878 0.9878 0.9878 1 0.9878 0.9878 0.9878 0.9558
c45pO 1 1 0.9893 1 1 1 1 0.7615 1 1 0.9893 0.9893
c60p60 0.9841 0.9841 0.9841 0.7552 1 1 0.9841 0.7552 1 0.9841 1 0.9937
d30p120 1 1 1 1 1 1 1 1 1 1 1 1
d45n30 1 1 1 0.6700 1 1 0.6700 1 1 1 1 1
d60p180 1 1 1 0.4611 1 1 1 0.2077 1 1 1 0.2506
o30n60 1 0.5920 0.5920 0.5920 0.5920 0.5920 0.5920 0.5920 0.5920 0.5920 0.5920 0.5920
o45p9O 0.8553 1 0.8553 0.3051 1 0.8553 0.8553 0.8553 0.8553 1 0.8553 0.8553
MEAN 0.9784 0.9415 0.9276 0.7229 0.9475 0.9294 0.8862 0.7819 0.9294 0.9455 0.9281 0.8296

Table 58. Case 5 Correlation Values
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Appendix C. Confusion Matrices

This appendix contains the confusion matrices associated with each satellite.

It is separated into cases describing the matched filter algorithms used. These cases

are identified in Section 7.
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Calculated Images Input Images
c c e

3 4 c 6
0 c 5 6 0
n 4  p 0 p
1 5 1 p 1
5 p 8 6 2
0 0 0 0 0

c30n150 12 0 0 0 0
c45pO 0 0 0 0 0

c45p180 0 12 0 0 0
c60p6O 0 0 0 10 0

c60p120 0 0 0 2 0

Table 59. Confusion Matrix for Chucksat, Case 1

Calculated Images Input Images
d d

d 3 d d d 6
3 0 4 4 6 0
0 p 5 5 0 p
p 1 n p p 1
9 2 3 9 9 8
0 0 0 0 0 0

d30p90 0 12 0 0 0 0
d30p120 0 0 0 00 0
d45n30 0 0 0 0 0 0
d45p90 0 0 12 0 0 0
d60p90 0 0 0 0 0 12

d60p180 0 0 0 0 0 0

Table 60. Confusion Matrix for DMSP, Case 1
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Calculated Images Input Images
0 0

3 o o 0 o 6
0 3 4 4 4 0
n 0 5 55 n
11n n n p 1

5 6 9 6 9 2
0 0 0 0 0 0

o30n150 0 0 0 0 0 12
o30n60 0 0 0 0 0 0
o45n90 0 0 0 0 12 0

o45n60 0 12 0 0 0 0
o45p9O 0 0 0 0 0 0

o60n120 0 0 0 0 0 0

Table 61. Confusion Matrix for OCNR, Case 1

Calculated Images Input Images
C C C C C

3 c c 3 4 4 6 c c c
0 3 c 3 0 5 c 5 0 6 6 6
n 0 3 0 p n 4 p n 0 0 0
1 n 0 p 1 1 5 1 1 n n p
5 3  p 3 5 5 p 8 5 6 3 6
0 0 0 0 0 0 0 0 0 0 0 0

c30n150 4 0 0 0 0 0 0 0 0 0 0 0
c30n30 1 0 0 0 0 0 1 0 0 0 0 0

c30pO 3 0 0 0 0 0 3 0 0 0 0 0
c30p30 2 0 0 0 0 0 0 0 0 0 0 0
c30p150 2 0 0 0 0 0 0 0 0 0 0 0
c45n150 0 0 0 0 0 0 3 0 0 0 0 1

c45p0 0 0 0 0 0 0 5 0 0 0 0 0

c45p180 0 0 0 0 0 0 0 00 0 0 1

c60n150 0 0 0 0 0 0 0 0 0 0 0 3

c60n60 0 0 0 0 0 0 0 0 0 0 0 2

c60n30 0 0 0 0 0 0 0 0 0 0 0 1
c60p60 0 0 0 0 0 0 0 0 0 0 0 4

Table 62. Confusion Matrix for Chucksat, Case 2
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Calculated Images Input Images
d d d d
3 d 3 d d 4 6
0 3 0 4 4 5 0
n 0 p 5 5 p p
1 n 1 n n 1 1
2 6 2 6 3 2 8
0 0 0 0 0 0 0

d30n120 0 0 2 0 0 0 0
d30n60 0 0 1 0 0 0 0
d30p120 0 0 9 0 0 0 4

d45n60 0 0 0 0 6 0 0
d45n30 0 0 0 0 6 0 0
d45p120 0 0 0 0 0 01
d60p180 0 0 0 0 0 0 7

Table 63. Confusion Matrix for DMSP, Case 2

Calculated Images Input Images
0 0

o 4 o o o o 6 o
3 5 4 4 4 4 0 6
0 n 5 5 5 5 n 0
n 1 n n n p 1 p
6 5 9 6 3 9 2 6
0 0 0 0 0 0 0 0

o30n60 7 0 0 0 0 0 0 0
o45n150 2 0 0 0 0 5 1 0

o45n90 0 0 0 0 0 2 10 0
o45n60 3 0 0 0 0 0 0 0

o45n30 0 0 0 0 0 0 5 0
o45p90 0- 0 0 0 0 5 0 0

o60n120 0 0 0 0 0 0 2 0

o60p60 0 0 0 0 0 040

Table 64. Confusion Matrix for OCNR, Case 2
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Calculated Images Input Images
c C c

3 4 c 6
0 c 5 6 0
n 4 p 0 p
S 1 p 1

5 p 8 6 2
0 0 0 0 0

c30n150 12 0 0 0 0
c45p0 0 0 0 0 0

c45p180 0 12 0 0 0

c60p60 0 0 0 9 0
c60p120 0 0 0 3 0

Table 65. Confusion Matrix for Chucksat, Case 3

Calculated Images Input Images
d d

d 3 d d d 6
3 0 4 4 6 0
0 p 5 5 0 p
p 1 n p p 1
9 2 3 9 9 8
0 0 0 0 0 0

d30p90 0 12 0 0 0 0

d30p120 0 0 0 0 0 0

d45n30 0 0 0 0 0 0
d45p90 0 0 12 0 0 0
d60p90 0 0 0 0 0 12

d60p180 0 0 0 0 0 0

Table 66. Confusion Matrix for DMSP, Case 3
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Calculated Images Input Images
0 0

o 3 o 0 o 6

3 0 4 4 4 0
0 p 5 5  5 n
n 1 n n p 1
6 5 9 6 9 2

0 0 0 0 0 0
o30n60 0 0 0 0 0 0
o30p15O 0 0 0 0 0 12

o45n90 0 0 0 0 12 0

o45n60 12 0 0 0 0 0

o45p9O 0 0 0 0 0 0

o60n120 0 0 0 0 0 0

Table 67. Confusion Matrix for OCNR, Case 3

Calculated Images Input Images
C C C

3 c 3 4 c c
0 c 3 0 c 5 6 c 6
n 3 0 p 4 p 0 6 0
1 0 p 1 5 1 n 0 p
5 p 3 5 p 8 6 p 6
0 0 0 0 0 0 0 0 0

c30n150 7 0 0 0 0 0 0 0 0

c30pO 1 0 0 0 0 0 0 0 0

c30p30 2 0 0 0 0 0 0 0 0

c30p150 2 0 0 0 0 0 0 0 0

c45p0 0 0 0 0 9 0 0 0 0

c45p180 0 0 0 0 3 0 0 0 0

c60n60 0 0 0 0 0 0 0 0 1

c60pO 0 0 0 0 0 0 0 0 3
c60p60 0 0 0 0 0 0 0 0 8

Table 68. Confusion Matrix for Chucksat, Case 4
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Calculated Images Input Images
d d d
3 d d 4 6
0 4 4 5 0
p 5  5 p p
1 n n 1 1
2 6 3 2 8
0 0 0 0 0

d30p120 12 0 0 0 0
d45n60 0 0 4 0 0
d45n30 0 0 8 0 0
d45p120 0 0 0 0 3
d60p180 0 0 0 0 9

Table 69. Confusion Matrix for DMSP, Case 4

Calculated Images Input Images
O 0 0 O
3 o 4 o o o o 4 6 o
0 3 5 4 4 4 4 5 0 6
n 0 n 5 5 5 5 p n 0
1 n 1 n n n p 1 1 p
5 6 5 9 6 3 9 5 2 6
0 0 0 0 0 0 0 0 0 0

o30n150 0 1 0 0 0 0 0 0 0 0
o30n60 0 8 0 0 0 0 0 0 0 0
o45n150 0 1 0 0 0 0 1 0 0 0
o45n90 0 0 0 0 0 0 2 0 0 0
o45n60 0 2 0 0 0 0 0 0 0 0
o45n30 0 0 0 0 0 0 0 0 3 0
o45p9O 0 0 0 0 0 0 8 0 0 0
o45p150 0 0 0 0 0 0 1 0 0 0
o60n120 0 0 0 0 0 0 0 0 2 0
o60p6O 0 0 0 0 0 0 0 0 6 0

Table 70. Confusion Matrix for OCNR, Case 4
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Calculated Images Input Images
C C C C C C

3 c 3 4 4 6 c c 6
0 3 0 5 c 5 0 6 6 0
n 0 p n 4 p n 0 0 p

1 p 1 1 5 1  n p 1
5 3 5 5 p 8 2 6 6 5
0 0 0 0 0 0 0 0 0 0

c30n150 3 0 0 0 0 0 0 0 0 0
c30p30 7 0 0 0 0 0 0 0 0 0
c30p150 3 0 0 0 0 0 0 0 0 0
c45n150 0 0 0 0 1 0 0 0 0 0
c45p0 0 0 0 0 8 0 0 0 0 0

c45p180 0 0 0 0 3 0 0 0 0 0
c60n120 0 0 0 0 0 0 0 0 1 0
c60n60 0 0 0 0 0 0 0 5 0
c60p60 0 0 0 0 0 0 0040
c60p150 0 0 0 0 0 0 0020

Table 71. Confusion Matrix for Chucksat, Case 5

Calculated Images Input Images
d d d
3 d d 4 6
0 4 4 5 0

p 5 5 p p
1 n n 1 1
2 6 3 2 8
0 0 0 0 0

d30p120 12 0 0 0 1
d45n60 0 0 4 0 0
d45n30 0 0 8 0 0
d45p120 0 0 0 0 2
d60p180 0 0 0 0 9

Table 72. Confusion Matrix for DMSP, Case 5
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Calculated Images Input Images
0

o 4 o 0
3 5 4 4
O n 5 5
ni1 n p
6 5 9 9
0 0 0 0

o30n60 1 0 0 0
o45n150 11 0 0 1
o45n90 0 0 0 8
o45p90 0 0 0 3

Table 73. Confusion Matrix for OCNR, Case 5
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